diff options
author | Joel Kronqvist <joel.h.kronqvist@gmail.com> | 2022-03-05 19:02:27 +0200 |
---|---|---|
committer | Joel Kronqvist <joel.h.kronqvist@gmail.com> | 2022-03-05 19:02:27 +0200 |
commit | 5d309ff52cd399a6b71968a6b9a70c8ac0b98981 (patch) | |
tree | 360f7eb50f956e2367ef38fa1fc6ac7ac5258042 /node_modules/diff-sequences/build/index.js | |
parent | b500a50f1b97d93c98b36ed9a980f8188d648147 (diff) | |
download | LYLLRuoka-5d309ff52cd399a6b71968a6b9a70c8ac0b98981.tar.gz LYLLRuoka-5d309ff52cd399a6b71968a6b9a70c8ac0b98981.zip |
Added node_modules for the updating to work properly.
Diffstat (limited to 'node_modules/diff-sequences/build/index.js')
-rw-r--r-- | node_modules/diff-sequences/build/index.js | 816 |
1 files changed, 816 insertions, 0 deletions
diff --git a/node_modules/diff-sequences/build/index.js b/node_modules/diff-sequences/build/index.js new file mode 100644 index 0000000..7ac6339 --- /dev/null +++ b/node_modules/diff-sequences/build/index.js @@ -0,0 +1,816 @@ +'use strict'; + +Object.defineProperty(exports, '__esModule', { + value: true +}); +exports.default = diffSequence; + +/** + * Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. + * + * This source code is licensed under the MIT license found in the + * LICENSE file in the root directory of this source tree. + * + */ +// This diff-sequences package implements the linear space variation in +// An O(ND) Difference Algorithm and Its Variations by Eugene W. Myers +// Relationship in notation between Myers paper and this package: +// A is a +// N is aLength, aEnd - aStart, and so on +// x is aIndex, aFirst, aLast, and so on +// B is b +// M is bLength, bEnd - bStart, and so on +// y is bIndex, bFirst, bLast, and so on +// Δ = N - M is negative of baDeltaLength = bLength - aLength +// D is d +// k is kF +// k + Δ is kF = kR - baDeltaLength +// V is aIndexesF or aIndexesR (see comment below about Indexes type) +// index intervals [1, N] and [1, M] are [0, aLength) and [0, bLength) +// starting point in forward direction (0, 0) is (-1, -1) +// starting point in reverse direction (N + 1, M + 1) is (aLength, bLength) +// The “edit graph” for sequences a and b corresponds to items: +// in a on the horizontal axis +// in b on the vertical axis +// +// Given a-coordinate of a point in a diagonal, you can compute b-coordinate. +// +// Forward diagonals kF: +// zero diagonal intersects top left corner +// positive diagonals intersect top edge +// negative diagonals insersect left edge +// +// Reverse diagonals kR: +// zero diagonal intersects bottom right corner +// positive diagonals intersect right edge +// negative diagonals intersect bottom edge +// The graph contains a directed acyclic graph of edges: +// horizontal: delete an item from a +// vertical: insert an item from b +// diagonal: common item in a and b +// +// The algorithm solves dual problems in the graph analogy: +// Find longest common subsequence: path with maximum number of diagonal edges +// Find shortest edit script: path with minimum number of non-diagonal edges +// Input callback function compares items at indexes in the sequences. +// Output callback function receives the number of adjacent items +// and starting indexes of each common subsequence. +// Either original functions or wrapped to swap indexes if graph is transposed. +// Indexes in sequence a of last point of forward or reverse paths in graph. +// Myers algorithm indexes by diagonal k which for negative is bad deopt in V8. +// This package indexes by iF and iR which are greater than or equal to zero. +// and also updates the index arrays in place to cut memory in half. +// kF = 2 * iF - d +// kR = d - 2 * iR +// Division of index intervals in sequences a and b at the middle change. +// Invariant: intervals do not have common items at the start or end. +const pkg = 'diff-sequences'; // for error messages + +const NOT_YET_SET = 0; // small int instead of undefined to avoid deopt in V8 +// Return the number of common items that follow in forward direction. +// The length of what Myers paper calls a “snake” in a forward path. + +const countCommonItemsF = (aIndex, aEnd, bIndex, bEnd, isCommon) => { + let nCommon = 0; + + while (aIndex < aEnd && bIndex < bEnd && isCommon(aIndex, bIndex)) { + aIndex += 1; + bIndex += 1; + nCommon += 1; + } + + return nCommon; +}; // Return the number of common items that precede in reverse direction. +// The length of what Myers paper calls a “snake” in a reverse path. + +const countCommonItemsR = (aStart, aIndex, bStart, bIndex, isCommon) => { + let nCommon = 0; + + while (aStart <= aIndex && bStart <= bIndex && isCommon(aIndex, bIndex)) { + aIndex -= 1; + bIndex -= 1; + nCommon += 1; + } + + return nCommon; +}; // A simple function to extend forward paths from (d - 1) to d changes +// when forward and reverse paths cannot yet overlap. + +const extendPathsF = ( + d, + aEnd, + bEnd, + bF, + isCommon, + aIndexesF, + iMaxF // return the value because optimization might decrease it +) => { + // Unroll the first iteration. + let iF = 0; + let kF = -d; // kF = 2 * iF - d + + let aFirst = aIndexesF[iF]; // in first iteration always insert + + let aIndexPrev1 = aFirst; // prev value of [iF - 1] in next iteration + + aIndexesF[iF] += countCommonItemsF( + aFirst + 1, + aEnd, + bF + aFirst - kF + 1, + bEnd, + isCommon + ); // Optimization: skip diagonals in which paths cannot ever overlap. + + const nF = d < iMaxF ? d : iMaxF; // The diagonals kF are odd when d is odd and even when d is even. + + for (iF += 1, kF += 2; iF <= nF; iF += 1, kF += 2) { + // To get first point of path segment, move one change in forward direction + // from last point of previous path segment in an adjacent diagonal. + // In last possible iteration when iF === d and kF === d always delete. + if (iF !== d && aIndexPrev1 < aIndexesF[iF]) { + aFirst = aIndexesF[iF]; // vertical to insert from b + } else { + aFirst = aIndexPrev1 + 1; // horizontal to delete from a + + if (aEnd <= aFirst) { + // Optimization: delete moved past right of graph. + return iF - 1; + } + } // To get last point of path segment, move along diagonal of common items. + + aIndexPrev1 = aIndexesF[iF]; + aIndexesF[iF] = + aFirst + + countCommonItemsF(aFirst + 1, aEnd, bF + aFirst - kF + 1, bEnd, isCommon); + } + + return iMaxF; +}; // A simple function to extend reverse paths from (d - 1) to d changes +// when reverse and forward paths cannot yet overlap. + +const extendPathsR = ( + d, + aStart, + bStart, + bR, + isCommon, + aIndexesR, + iMaxR // return the value because optimization might decrease it +) => { + // Unroll the first iteration. + let iR = 0; + let kR = d; // kR = d - 2 * iR + + let aFirst = aIndexesR[iR]; // in first iteration always insert + + let aIndexPrev1 = aFirst; // prev value of [iR - 1] in next iteration + + aIndexesR[iR] -= countCommonItemsR( + aStart, + aFirst - 1, + bStart, + bR + aFirst - kR - 1, + isCommon + ); // Optimization: skip diagonals in which paths cannot ever overlap. + + const nR = d < iMaxR ? d : iMaxR; // The diagonals kR are odd when d is odd and even when d is even. + + for (iR += 1, kR -= 2; iR <= nR; iR += 1, kR -= 2) { + // To get first point of path segment, move one change in reverse direction + // from last point of previous path segment in an adjacent diagonal. + // In last possible iteration when iR === d and kR === -d always delete. + if (iR !== d && aIndexesR[iR] < aIndexPrev1) { + aFirst = aIndexesR[iR]; // vertical to insert from b + } else { + aFirst = aIndexPrev1 - 1; // horizontal to delete from a + + if (aFirst < aStart) { + // Optimization: delete moved past left of graph. + return iR - 1; + } + } // To get last point of path segment, move along diagonal of common items. + + aIndexPrev1 = aIndexesR[iR]; + aIndexesR[iR] = + aFirst - + countCommonItemsR( + aStart, + aFirst - 1, + bStart, + bR + aFirst - kR - 1, + isCommon + ); + } + + return iMaxR; +}; // A complete function to extend forward paths from (d - 1) to d changes. +// Return true if a path overlaps reverse path of (d - 1) changes in its diagonal. + +const extendOverlappablePathsF = ( + d, + aStart, + aEnd, + bStart, + bEnd, + isCommon, + aIndexesF, + iMaxF, + aIndexesR, + iMaxR, + division // update prop values if return true +) => { + const bF = bStart - aStart; // bIndex = bF + aIndex - kF + + const aLength = aEnd - aStart; + const bLength = bEnd - bStart; + const baDeltaLength = bLength - aLength; // kF = kR - baDeltaLength + // Range of diagonals in which forward and reverse paths might overlap. + + const kMinOverlapF = -baDeltaLength - (d - 1); // -(d - 1) <= kR + + const kMaxOverlapF = -baDeltaLength + (d - 1); // kR <= (d - 1) + + let aIndexPrev1 = NOT_YET_SET; // prev value of [iF - 1] in next iteration + // Optimization: skip diagonals in which paths cannot ever overlap. + + const nF = d < iMaxF ? d : iMaxF; // The diagonals kF = 2 * iF - d are odd when d is odd and even when d is even. + + for (let iF = 0, kF = -d; iF <= nF; iF += 1, kF += 2) { + // To get first point of path segment, move one change in forward direction + // from last point of previous path segment in an adjacent diagonal. + // In first iteration when iF === 0 and kF === -d always insert. + // In last possible iteration when iF === d and kF === d always delete. + const insert = iF === 0 || (iF !== d && aIndexPrev1 < aIndexesF[iF]); + const aLastPrev = insert ? aIndexesF[iF] : aIndexPrev1; + const aFirst = insert + ? aLastPrev // vertical to insert from b + : aLastPrev + 1; // horizontal to delete from a + // To get last point of path segment, move along diagonal of common items. + + const bFirst = bF + aFirst - kF; + const nCommonF = countCommonItemsF( + aFirst + 1, + aEnd, + bFirst + 1, + bEnd, + isCommon + ); + const aLast = aFirst + nCommonF; + aIndexPrev1 = aIndexesF[iF]; + aIndexesF[iF] = aLast; + + if (kMinOverlapF <= kF && kF <= kMaxOverlapF) { + // Solve for iR of reverse path with (d - 1) changes in diagonal kF: + // kR = kF + baDeltaLength + // kR = (d - 1) - 2 * iR + const iR = (d - 1 - (kF + baDeltaLength)) / 2; // If this forward path overlaps the reverse path in this diagonal, + // then this is the middle change of the index intervals. + + if (iR <= iMaxR && aIndexesR[iR] - 1 <= aLast) { + // Unlike the Myers algorithm which finds only the middle “snake” + // this package can find two common subsequences per division. + // Last point of previous path segment is on an adjacent diagonal. + const bLastPrev = bF + aLastPrev - (insert ? kF + 1 : kF - 1); // Because of invariant that intervals preceding the middle change + // cannot have common items at the end, + // move in reverse direction along a diagonal of common items. + + const nCommonR = countCommonItemsR( + aStart, + aLastPrev, + bStart, + bLastPrev, + isCommon + ); + const aIndexPrevFirst = aLastPrev - nCommonR; + const bIndexPrevFirst = bLastPrev - nCommonR; + const aEndPreceding = aIndexPrevFirst + 1; + const bEndPreceding = bIndexPrevFirst + 1; + division.nChangePreceding = d - 1; + + if (d - 1 === aEndPreceding + bEndPreceding - aStart - bStart) { + // Optimization: number of preceding changes in forward direction + // is equal to number of items in preceding interval, + // therefore it cannot contain any common items. + division.aEndPreceding = aStart; + division.bEndPreceding = bStart; + } else { + division.aEndPreceding = aEndPreceding; + division.bEndPreceding = bEndPreceding; + } + + division.nCommonPreceding = nCommonR; + + if (nCommonR !== 0) { + division.aCommonPreceding = aEndPreceding; + division.bCommonPreceding = bEndPreceding; + } + + division.nCommonFollowing = nCommonF; + + if (nCommonF !== 0) { + division.aCommonFollowing = aFirst + 1; + division.bCommonFollowing = bFirst + 1; + } + + const aStartFollowing = aLast + 1; + const bStartFollowing = bFirst + nCommonF + 1; + division.nChangeFollowing = d - 1; + + if (d - 1 === aEnd + bEnd - aStartFollowing - bStartFollowing) { + // Optimization: number of changes in reverse direction + // is equal to number of items in following interval, + // therefore it cannot contain any common items. + division.aStartFollowing = aEnd; + division.bStartFollowing = bEnd; + } else { + division.aStartFollowing = aStartFollowing; + division.bStartFollowing = bStartFollowing; + } + + return true; + } + } + } + + return false; +}; // A complete function to extend reverse paths from (d - 1) to d changes. +// Return true if a path overlaps forward path of d changes in its diagonal. + +const extendOverlappablePathsR = ( + d, + aStart, + aEnd, + bStart, + bEnd, + isCommon, + aIndexesF, + iMaxF, + aIndexesR, + iMaxR, + division // update prop values if return true +) => { + const bR = bEnd - aEnd; // bIndex = bR + aIndex - kR + + const aLength = aEnd - aStart; + const bLength = bEnd - bStart; + const baDeltaLength = bLength - aLength; // kR = kF + baDeltaLength + // Range of diagonals in which forward and reverse paths might overlap. + + const kMinOverlapR = baDeltaLength - d; // -d <= kF + + const kMaxOverlapR = baDeltaLength + d; // kF <= d + + let aIndexPrev1 = NOT_YET_SET; // prev value of [iR - 1] in next iteration + // Optimization: skip diagonals in which paths cannot ever overlap. + + const nR = d < iMaxR ? d : iMaxR; // The diagonals kR = d - 2 * iR are odd when d is odd and even when d is even. + + for (let iR = 0, kR = d; iR <= nR; iR += 1, kR -= 2) { + // To get first point of path segment, move one change in reverse direction + // from last point of previous path segment in an adjacent diagonal. + // In first iteration when iR === 0 and kR === d always insert. + // In last possible iteration when iR === d and kR === -d always delete. + const insert = iR === 0 || (iR !== d && aIndexesR[iR] < aIndexPrev1); + const aLastPrev = insert ? aIndexesR[iR] : aIndexPrev1; + const aFirst = insert + ? aLastPrev // vertical to insert from b + : aLastPrev - 1; // horizontal to delete from a + // To get last point of path segment, move along diagonal of common items. + + const bFirst = bR + aFirst - kR; + const nCommonR = countCommonItemsR( + aStart, + aFirst - 1, + bStart, + bFirst - 1, + isCommon + ); + const aLast = aFirst - nCommonR; + aIndexPrev1 = aIndexesR[iR]; + aIndexesR[iR] = aLast; + + if (kMinOverlapR <= kR && kR <= kMaxOverlapR) { + // Solve for iF of forward path with d changes in diagonal kR: + // kF = kR - baDeltaLength + // kF = 2 * iF - d + const iF = (d + (kR - baDeltaLength)) / 2; // If this reverse path overlaps the forward path in this diagonal, + // then this is a middle change of the index intervals. + + if (iF <= iMaxF && aLast - 1 <= aIndexesF[iF]) { + const bLast = bFirst - nCommonR; + division.nChangePreceding = d; + + if (d === aLast + bLast - aStart - bStart) { + // Optimization: number of changes in reverse direction + // is equal to number of items in preceding interval, + // therefore it cannot contain any common items. + division.aEndPreceding = aStart; + division.bEndPreceding = bStart; + } else { + division.aEndPreceding = aLast; + division.bEndPreceding = bLast; + } + + division.nCommonPreceding = nCommonR; + + if (nCommonR !== 0) { + // The last point of reverse path segment is start of common subsequence. + division.aCommonPreceding = aLast; + division.bCommonPreceding = bLast; + } + + division.nChangeFollowing = d - 1; + + if (d === 1) { + // There is no previous path segment. + division.nCommonFollowing = 0; + division.aStartFollowing = aEnd; + division.bStartFollowing = bEnd; + } else { + // Unlike the Myers algorithm which finds only the middle “snake” + // this package can find two common subsequences per division. + // Last point of previous path segment is on an adjacent diagonal. + const bLastPrev = bR + aLastPrev - (insert ? kR - 1 : kR + 1); // Because of invariant that intervals following the middle change + // cannot have common items at the start, + // move in forward direction along a diagonal of common items. + + const nCommonF = countCommonItemsF( + aLastPrev, + aEnd, + bLastPrev, + bEnd, + isCommon + ); + division.nCommonFollowing = nCommonF; + + if (nCommonF !== 0) { + // The last point of reverse path segment is start of common subsequence. + division.aCommonFollowing = aLastPrev; + division.bCommonFollowing = bLastPrev; + } + + const aStartFollowing = aLastPrev + nCommonF; // aFirstPrev + + const bStartFollowing = bLastPrev + nCommonF; // bFirstPrev + + if (d - 1 === aEnd + bEnd - aStartFollowing - bStartFollowing) { + // Optimization: number of changes in forward direction + // is equal to number of items in following interval, + // therefore it cannot contain any common items. + division.aStartFollowing = aEnd; + division.bStartFollowing = bEnd; + } else { + division.aStartFollowing = aStartFollowing; + division.bStartFollowing = bStartFollowing; + } + } + + return true; + } + } + } + + return false; +}; // Given index intervals and input function to compare items at indexes, +// divide at the middle change. +// +// DO NOT CALL if start === end, because interval cannot contain common items +// and because this function will throw the “no overlap” error. + +const divide = ( + nChange, + aStart, + aEnd, + bStart, + bEnd, + isCommon, + aIndexesF, + aIndexesR, + division // output +) => { + const bF = bStart - aStart; // bIndex = bF + aIndex - kF + + const bR = bEnd - aEnd; // bIndex = bR + aIndex - kR + + const aLength = aEnd - aStart; + const bLength = bEnd - bStart; // Because graph has square or portrait orientation, + // length difference is minimum number of items to insert from b. + // Corresponding forward and reverse diagonals in graph + // depend on length difference of the sequences: + // kF = kR - baDeltaLength + // kR = kF + baDeltaLength + + const baDeltaLength = bLength - aLength; // Optimization: max diagonal in graph intersects corner of shorter side. + + let iMaxF = aLength; + let iMaxR = aLength; // Initialize no changes yet in forward or reverse direction: + + aIndexesF[0] = aStart - 1; // at open start of interval, outside closed start + + aIndexesR[0] = aEnd; // at open end of interval + + if (baDeltaLength % 2 === 0) { + // The number of changes in paths is 2 * d if length difference is even. + const dMin = (nChange || baDeltaLength) / 2; + const dMax = (aLength + bLength) / 2; + + for (let d = 1; d <= dMax; d += 1) { + iMaxF = extendPathsF(d, aEnd, bEnd, bF, isCommon, aIndexesF, iMaxF); + + if (d < dMin) { + iMaxR = extendPathsR(d, aStart, bStart, bR, isCommon, aIndexesR, iMaxR); + } else if ( + // If a reverse path overlaps a forward path in the same diagonal, + // return a division of the index intervals at the middle change. + extendOverlappablePathsR( + d, + aStart, + aEnd, + bStart, + bEnd, + isCommon, + aIndexesF, + iMaxF, + aIndexesR, + iMaxR, + division + ) + ) { + return; + } + } + } else { + // The number of changes in paths is 2 * d - 1 if length difference is odd. + const dMin = ((nChange || baDeltaLength) + 1) / 2; + const dMax = (aLength + bLength + 1) / 2; // Unroll first half iteration so loop extends the relevant pairs of paths. + // Because of invariant that intervals have no common items at start or end, + // and limitation not to call divide with empty intervals, + // therefore it cannot be called if a forward path with one change + // would overlap a reverse path with no changes, even if dMin === 1. + + let d = 1; + iMaxF = extendPathsF(d, aEnd, bEnd, bF, isCommon, aIndexesF, iMaxF); + + for (d += 1; d <= dMax; d += 1) { + iMaxR = extendPathsR( + d - 1, + aStart, + bStart, + bR, + isCommon, + aIndexesR, + iMaxR + ); + + if (d < dMin) { + iMaxF = extendPathsF(d, aEnd, bEnd, bF, isCommon, aIndexesF, iMaxF); + } else if ( + // If a forward path overlaps a reverse path in the same diagonal, + // return a division of the index intervals at the middle change. + extendOverlappablePathsF( + d, + aStart, + aEnd, + bStart, + bEnd, + isCommon, + aIndexesF, + iMaxF, + aIndexesR, + iMaxR, + division + ) + ) { + return; + } + } + } + /* istanbul ignore next */ + + throw new Error( + `${pkg}: no overlap aStart=${aStart} aEnd=${aEnd} bStart=${bStart} bEnd=${bEnd}` + ); +}; // Given index intervals and input function to compare items at indexes, +// return by output function the number of adjacent items and starting indexes +// of each common subsequence. Divide and conquer with only linear space. +// +// The index intervals are half open [start, end) like array slice method. +// DO NOT CALL if start === end, because interval cannot contain common items +// and because divide function will throw the “no overlap” error. + +const findSubsequences = ( + nChange, + aStart, + aEnd, + bStart, + bEnd, + transposed, + callbacks, + aIndexesF, + aIndexesR, + division // temporary memory, not input nor output +) => { + if (bEnd - bStart < aEnd - aStart) { + // Transpose graph so it has portrait instead of landscape orientation. + // Always compare shorter to longer sequence for consistency and optimization. + transposed = !transposed; + + if (transposed && callbacks.length === 1) { + // Lazily wrap callback functions to swap args if graph is transposed. + const {foundSubsequence, isCommon} = callbacks[0]; + callbacks[1] = { + foundSubsequence: (nCommon, bCommon, aCommon) => { + foundSubsequence(nCommon, aCommon, bCommon); + }, + isCommon: (bIndex, aIndex) => isCommon(aIndex, bIndex) + }; + } + + const tStart = aStart; + const tEnd = aEnd; + aStart = bStart; + aEnd = bEnd; + bStart = tStart; + bEnd = tEnd; + } + + const {foundSubsequence, isCommon} = callbacks[transposed ? 1 : 0]; // Divide the index intervals at the middle change. + + divide( + nChange, + aStart, + aEnd, + bStart, + bEnd, + isCommon, + aIndexesF, + aIndexesR, + division + ); + const { + nChangePreceding, + aEndPreceding, + bEndPreceding, + nCommonPreceding, + aCommonPreceding, + bCommonPreceding, + nCommonFollowing, + aCommonFollowing, + bCommonFollowing, + nChangeFollowing, + aStartFollowing, + bStartFollowing + } = division; // Unless either index interval is empty, they might contain common items. + + if (aStart < aEndPreceding && bStart < bEndPreceding) { + // Recursely find and return common subsequences preceding the division. + findSubsequences( + nChangePreceding, + aStart, + aEndPreceding, + bStart, + bEndPreceding, + transposed, + callbacks, + aIndexesF, + aIndexesR, + division + ); + } // Return common subsequences that are adjacent to the middle change. + + if (nCommonPreceding !== 0) { + foundSubsequence(nCommonPreceding, aCommonPreceding, bCommonPreceding); + } + + if (nCommonFollowing !== 0) { + foundSubsequence(nCommonFollowing, aCommonFollowing, bCommonFollowing); + } // Unless either index interval is empty, they might contain common items. + + if (aStartFollowing < aEnd && bStartFollowing < bEnd) { + // Recursely find and return common subsequences following the division. + findSubsequences( + nChangeFollowing, + aStartFollowing, + aEnd, + bStartFollowing, + bEnd, + transposed, + callbacks, + aIndexesF, + aIndexesR, + division + ); + } +}; + +const validateLength = (name, arg) => { + if (typeof arg !== 'number') { + throw new TypeError(`${pkg}: ${name} typeof ${typeof arg} is not a number`); + } + + if (!Number.isSafeInteger(arg)) { + throw new RangeError(`${pkg}: ${name} value ${arg} is not a safe integer`); + } + + if (arg < 0) { + throw new RangeError(`${pkg}: ${name} value ${arg} is a negative integer`); + } +}; + +const validateCallback = (name, arg) => { + const type = typeof arg; + + if (type !== 'function') { + throw new TypeError(`${pkg}: ${name} typeof ${type} is not a function`); + } +}; // Compare items in two sequences to find a longest common subsequence. +// Given lengths of sequences and input function to compare items at indexes, +// return by output function the number of adjacent items and starting indexes +// of each common subsequence. + +function diffSequence(aLength, bLength, isCommon, foundSubsequence) { + validateLength('aLength', aLength); + validateLength('bLength', bLength); + validateCallback('isCommon', isCommon); + validateCallback('foundSubsequence', foundSubsequence); // Count common items from the start in the forward direction. + + const nCommonF = countCommonItemsF(0, aLength, 0, bLength, isCommon); + + if (nCommonF !== 0) { + foundSubsequence(nCommonF, 0, 0); + } // Unless both sequences consist of common items only, + // find common items in the half-trimmed index intervals. + + if (aLength !== nCommonF || bLength !== nCommonF) { + // Invariant: intervals do not have common items at the start. + // The start of an index interval is closed like array slice method. + const aStart = nCommonF; + const bStart = nCommonF; // Count common items from the end in the reverse direction. + + const nCommonR = countCommonItemsR( + aStart, + aLength - 1, + bStart, + bLength - 1, + isCommon + ); // Invariant: intervals do not have common items at the end. + // The end of an index interval is open like array slice method. + + const aEnd = aLength - nCommonR; + const bEnd = bLength - nCommonR; // Unless one sequence consists of common items only, + // therefore the other trimmed index interval consists of changes only, + // find common items in the trimmed index intervals. + + const nCommonFR = nCommonF + nCommonR; + + if (aLength !== nCommonFR && bLength !== nCommonFR) { + const nChange = 0; // number of change items is not yet known + + const transposed = false; // call the original unwrapped functions + + const callbacks = [ + { + foundSubsequence, + isCommon + } + ]; // Indexes in sequence a of last points in furthest reaching paths + // from outside the start at top left in the forward direction: + + const aIndexesF = [NOT_YET_SET]; // from the end at bottom right in the reverse direction: + + const aIndexesR = [NOT_YET_SET]; // Initialize one object as output of all calls to divide function. + + const division = { + aCommonFollowing: NOT_YET_SET, + aCommonPreceding: NOT_YET_SET, + aEndPreceding: NOT_YET_SET, + aStartFollowing: NOT_YET_SET, + bCommonFollowing: NOT_YET_SET, + bCommonPreceding: NOT_YET_SET, + bEndPreceding: NOT_YET_SET, + bStartFollowing: NOT_YET_SET, + nChangeFollowing: NOT_YET_SET, + nChangePreceding: NOT_YET_SET, + nCommonFollowing: NOT_YET_SET, + nCommonPreceding: NOT_YET_SET + }; // Find and return common subsequences in the trimmed index intervals. + + findSubsequences( + nChange, + aStart, + aEnd, + bStart, + bEnd, + transposed, + callbacks, + aIndexesF, + aIndexesR, + division + ); + } + + if (nCommonR !== 0) { + foundSubsequence(nCommonR, aEnd, bEnd); + } + } +} |