diff options
| author | Joel Kronqvist <joel.h.kronqvist@gmail.com> | 2022-03-05 19:02:27 +0200 | 
|---|---|---|
| committer | Joel Kronqvist <joel.h.kronqvist@gmail.com> | 2022-03-05 19:02:27 +0200 | 
| commit | 5d309ff52cd399a6b71968a6b9a70c8ac0b98981 (patch) | |
| tree | 360f7eb50f956e2367ef38fa1fc6ac7ac5258042 /node_modules/diff-sequences/build | |
| parent | b500a50f1b97d93c98b36ed9a980f8188d648147 (diff) | |
| download | LYLLRuoka-5d309ff52cd399a6b71968a6b9a70c8ac0b98981.tar.gz LYLLRuoka-5d309ff52cd399a6b71968a6b9a70c8ac0b98981.zip  | |
Added node_modules for the updating to work properly.
Diffstat (limited to 'node_modules/diff-sequences/build')
| -rw-r--r-- | node_modules/diff-sequences/build/index.d.ts | 18 | ||||
| -rw-r--r-- | node_modules/diff-sequences/build/index.js | 816 | 
2 files changed, 834 insertions, 0 deletions
diff --git a/node_modules/diff-sequences/build/index.d.ts b/node_modules/diff-sequences/build/index.d.ts new file mode 100644 index 0000000..29d1946 --- /dev/null +++ b/node_modules/diff-sequences/build/index.d.ts @@ -0,0 +1,18 @@ +/** + * Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. + * + * This source code is licensed under the MIT license found in the + * LICENSE file in the root directory of this source tree. + * + */ +declare type IsCommon = (aIndex: number, // caller can assume: 0 <= aIndex && aIndex < aLength +bIndex: number) => boolean; +declare type FoundSubsequence = (nCommon: number, // caller can assume: 0 < nCommon +aCommon: number, // caller can assume: 0 <= aCommon && aCommon < aLength +bCommon: number) => void; +export declare type Callbacks = { +    foundSubsequence: FoundSubsequence; +    isCommon: IsCommon; +}; +export default function diffSequence(aLength: number, bLength: number, isCommon: IsCommon, foundSubsequence: FoundSubsequence): void; +export {}; diff --git a/node_modules/diff-sequences/build/index.js b/node_modules/diff-sequences/build/index.js new file mode 100644 index 0000000..7ac6339 --- /dev/null +++ b/node_modules/diff-sequences/build/index.js @@ -0,0 +1,816 @@ +'use strict'; + +Object.defineProperty(exports, '__esModule', { +  value: true +}); +exports.default = diffSequence; + +/** + * Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. + * + * This source code is licensed under the MIT license found in the + * LICENSE file in the root directory of this source tree. + * + */ +// This diff-sequences package implements the linear space variation in +// An O(ND) Difference Algorithm and Its Variations by Eugene W. Myers +// Relationship in notation between Myers paper and this package: +// A is a +// N is aLength, aEnd - aStart, and so on +// x is aIndex, aFirst, aLast, and so on +// B is b +// M is bLength, bEnd - bStart, and so on +// y is bIndex, bFirst, bLast, and so on +// Δ = N - M is negative of baDeltaLength = bLength - aLength +// D is d +// k is kF +// k + Δ is kF = kR - baDeltaLength +// V is aIndexesF or aIndexesR (see comment below about Indexes type) +// index intervals [1, N] and [1, M] are [0, aLength) and [0, bLength) +// starting point in forward direction (0, 0) is (-1, -1) +// starting point in reverse direction (N + 1, M + 1) is (aLength, bLength) +// The “edit graph” for sequences a and b corresponds to items: +// in a on the horizontal axis +// in b on the vertical axis +// +// Given a-coordinate of a point in a diagonal, you can compute b-coordinate. +// +// Forward diagonals kF: +// zero diagonal intersects top left corner +// positive diagonals intersect top edge +// negative diagonals insersect left edge +// +// Reverse diagonals kR: +// zero diagonal intersects bottom right corner +// positive diagonals intersect right edge +// negative diagonals intersect bottom edge +// The graph contains a directed acyclic graph of edges: +// horizontal: delete an item from a +// vertical: insert an item from b +// diagonal: common item in a and b +// +// The algorithm solves dual problems in the graph analogy: +// Find longest common subsequence: path with maximum number of diagonal edges +// Find shortest edit script: path with minimum number of non-diagonal edges +// Input callback function compares items at indexes in the sequences. +// Output callback function receives the number of adjacent items +// and starting indexes of each common subsequence. +// Either original functions or wrapped to swap indexes if graph is transposed. +// Indexes in sequence a of last point of forward or reverse paths in graph. +// Myers algorithm indexes by diagonal k which for negative is bad deopt in V8. +// This package indexes by iF and iR which are greater than or equal to zero. +// and also updates the index arrays in place to cut memory in half. +// kF = 2 * iF - d +// kR = d - 2 * iR +// Division of index intervals in sequences a and b at the middle change. +// Invariant: intervals do not have common items at the start or end. +const pkg = 'diff-sequences'; // for error messages + +const NOT_YET_SET = 0; // small int instead of undefined to avoid deopt in V8 +// Return the number of common items that follow in forward direction. +// The length of what Myers paper calls a “snake” in a forward path. + +const countCommonItemsF = (aIndex, aEnd, bIndex, bEnd, isCommon) => { +  let nCommon = 0; + +  while (aIndex < aEnd && bIndex < bEnd && isCommon(aIndex, bIndex)) { +    aIndex += 1; +    bIndex += 1; +    nCommon += 1; +  } + +  return nCommon; +}; // Return the number of common items that precede in reverse direction. +// The length of what Myers paper calls a “snake” in a reverse path. + +const countCommonItemsR = (aStart, aIndex, bStart, bIndex, isCommon) => { +  let nCommon = 0; + +  while (aStart <= aIndex && bStart <= bIndex && isCommon(aIndex, bIndex)) { +    aIndex -= 1; +    bIndex -= 1; +    nCommon += 1; +  } + +  return nCommon; +}; // A simple function to extend forward paths from (d - 1) to d changes +// when forward and reverse paths cannot yet overlap. + +const extendPathsF = ( +  d, +  aEnd, +  bEnd, +  bF, +  isCommon, +  aIndexesF, +  iMaxF // return the value because optimization might decrease it +) => { +  // Unroll the first iteration. +  let iF = 0; +  let kF = -d; // kF = 2 * iF - d + +  let aFirst = aIndexesF[iF]; // in first iteration always insert + +  let aIndexPrev1 = aFirst; // prev value of [iF - 1] in next iteration + +  aIndexesF[iF] += countCommonItemsF( +    aFirst + 1, +    aEnd, +    bF + aFirst - kF + 1, +    bEnd, +    isCommon +  ); // Optimization: skip diagonals in which paths cannot ever overlap. + +  const nF = d < iMaxF ? d : iMaxF; // The diagonals kF are odd when d is odd and even when d is even. + +  for (iF += 1, kF += 2; iF <= nF; iF += 1, kF += 2) { +    // To get first point of path segment, move one change in forward direction +    // from last point of previous path segment in an adjacent diagonal. +    // In last possible iteration when iF === d and kF === d always delete. +    if (iF !== d && aIndexPrev1 < aIndexesF[iF]) { +      aFirst = aIndexesF[iF]; // vertical to insert from b +    } else { +      aFirst = aIndexPrev1 + 1; // horizontal to delete from a + +      if (aEnd <= aFirst) { +        // Optimization: delete moved past right of graph. +        return iF - 1; +      } +    } // To get last point of path segment, move along diagonal of common items. + +    aIndexPrev1 = aIndexesF[iF]; +    aIndexesF[iF] = +      aFirst + +      countCommonItemsF(aFirst + 1, aEnd, bF + aFirst - kF + 1, bEnd, isCommon); +  } + +  return iMaxF; +}; // A simple function to extend reverse paths from (d - 1) to d changes +// when reverse and forward paths cannot yet overlap. + +const extendPathsR = ( +  d, +  aStart, +  bStart, +  bR, +  isCommon, +  aIndexesR, +  iMaxR // return the value because optimization might decrease it +) => { +  // Unroll the first iteration. +  let iR = 0; +  let kR = d; // kR = d - 2 * iR + +  let aFirst = aIndexesR[iR]; // in first iteration always insert + +  let aIndexPrev1 = aFirst; // prev value of [iR - 1] in next iteration + +  aIndexesR[iR] -= countCommonItemsR( +    aStart, +    aFirst - 1, +    bStart, +    bR + aFirst - kR - 1, +    isCommon +  ); // Optimization: skip diagonals in which paths cannot ever overlap. + +  const nR = d < iMaxR ? d : iMaxR; // The diagonals kR are odd when d is odd and even when d is even. + +  for (iR += 1, kR -= 2; iR <= nR; iR += 1, kR -= 2) { +    // To get first point of path segment, move one change in reverse direction +    // from last point of previous path segment in an adjacent diagonal. +    // In last possible iteration when iR === d and kR === -d always delete. +    if (iR !== d && aIndexesR[iR] < aIndexPrev1) { +      aFirst = aIndexesR[iR]; // vertical to insert from b +    } else { +      aFirst = aIndexPrev1 - 1; // horizontal to delete from a + +      if (aFirst < aStart) { +        // Optimization: delete moved past left of graph. +        return iR - 1; +      } +    } // To get last point of path segment, move along diagonal of common items. + +    aIndexPrev1 = aIndexesR[iR]; +    aIndexesR[iR] = +      aFirst - +      countCommonItemsR( +        aStart, +        aFirst - 1, +        bStart, +        bR + aFirst - kR - 1, +        isCommon +      ); +  } + +  return iMaxR; +}; // A complete function to extend forward paths from (d - 1) to d changes. +// Return true if a path overlaps reverse path of (d - 1) changes in its diagonal. + +const extendOverlappablePathsF = ( +  d, +  aStart, +  aEnd, +  bStart, +  bEnd, +  isCommon, +  aIndexesF, +  iMaxF, +  aIndexesR, +  iMaxR, +  division // update prop values if return true +) => { +  const bF = bStart - aStart; // bIndex = bF + aIndex - kF + +  const aLength = aEnd - aStart; +  const bLength = bEnd - bStart; +  const baDeltaLength = bLength - aLength; // kF = kR - baDeltaLength +  // Range of diagonals in which forward and reverse paths might overlap. + +  const kMinOverlapF = -baDeltaLength - (d - 1); // -(d - 1) <= kR + +  const kMaxOverlapF = -baDeltaLength + (d - 1); // kR <= (d - 1) + +  let aIndexPrev1 = NOT_YET_SET; // prev value of [iF - 1] in next iteration +  // Optimization: skip diagonals in which paths cannot ever overlap. + +  const nF = d < iMaxF ? d : iMaxF; // The diagonals kF = 2 * iF - d are odd when d is odd and even when d is even. + +  for (let iF = 0, kF = -d; iF <= nF; iF += 1, kF += 2) { +    // To get first point of path segment, move one change in forward direction +    // from last point of previous path segment in an adjacent diagonal. +    // In first iteration when iF === 0 and kF === -d always insert. +    // In last possible iteration when iF === d and kF === d always delete. +    const insert = iF === 0 || (iF !== d && aIndexPrev1 < aIndexesF[iF]); +    const aLastPrev = insert ? aIndexesF[iF] : aIndexPrev1; +    const aFirst = insert +      ? aLastPrev // vertical to insert from b +      : aLastPrev + 1; // horizontal to delete from a +    // To get last point of path segment, move along diagonal of common items. + +    const bFirst = bF + aFirst - kF; +    const nCommonF = countCommonItemsF( +      aFirst + 1, +      aEnd, +      bFirst + 1, +      bEnd, +      isCommon +    ); +    const aLast = aFirst + nCommonF; +    aIndexPrev1 = aIndexesF[iF]; +    aIndexesF[iF] = aLast; + +    if (kMinOverlapF <= kF && kF <= kMaxOverlapF) { +      // Solve for iR of reverse path with (d - 1) changes in diagonal kF: +      // kR = kF + baDeltaLength +      // kR = (d - 1) - 2 * iR +      const iR = (d - 1 - (kF + baDeltaLength)) / 2; // If this forward path overlaps the reverse path in this diagonal, +      // then this is the middle change of the index intervals. + +      if (iR <= iMaxR && aIndexesR[iR] - 1 <= aLast) { +        // Unlike the Myers algorithm which finds only the middle “snake” +        // this package can find two common subsequences per division. +        // Last point of previous path segment is on an adjacent diagonal. +        const bLastPrev = bF + aLastPrev - (insert ? kF + 1 : kF - 1); // Because of invariant that intervals preceding the middle change +        // cannot have common items at the end, +        // move in reverse direction along a diagonal of common items. + +        const nCommonR = countCommonItemsR( +          aStart, +          aLastPrev, +          bStart, +          bLastPrev, +          isCommon +        ); +        const aIndexPrevFirst = aLastPrev - nCommonR; +        const bIndexPrevFirst = bLastPrev - nCommonR; +        const aEndPreceding = aIndexPrevFirst + 1; +        const bEndPreceding = bIndexPrevFirst + 1; +        division.nChangePreceding = d - 1; + +        if (d - 1 === aEndPreceding + bEndPreceding - aStart - bStart) { +          // Optimization: number of preceding changes in forward direction +          // is equal to number of items in preceding interval, +          // therefore it cannot contain any common items. +          division.aEndPreceding = aStart; +          division.bEndPreceding = bStart; +        } else { +          division.aEndPreceding = aEndPreceding; +          division.bEndPreceding = bEndPreceding; +        } + +        division.nCommonPreceding = nCommonR; + +        if (nCommonR !== 0) { +          division.aCommonPreceding = aEndPreceding; +          division.bCommonPreceding = bEndPreceding; +        } + +        division.nCommonFollowing = nCommonF; + +        if (nCommonF !== 0) { +          division.aCommonFollowing = aFirst + 1; +          division.bCommonFollowing = bFirst + 1; +        } + +        const aStartFollowing = aLast + 1; +        const bStartFollowing = bFirst + nCommonF + 1; +        division.nChangeFollowing = d - 1; + +        if (d - 1 === aEnd + bEnd - aStartFollowing - bStartFollowing) { +          // Optimization: number of changes in reverse direction +          // is equal to number of items in following interval, +          // therefore it cannot contain any common items. +          division.aStartFollowing = aEnd; +          division.bStartFollowing = bEnd; +        } else { +          division.aStartFollowing = aStartFollowing; +          division.bStartFollowing = bStartFollowing; +        } + +        return true; +      } +    } +  } + +  return false; +}; // A complete function to extend reverse paths from (d - 1) to d changes. +// Return true if a path overlaps forward path of d changes in its diagonal. + +const extendOverlappablePathsR = ( +  d, +  aStart, +  aEnd, +  bStart, +  bEnd, +  isCommon, +  aIndexesF, +  iMaxF, +  aIndexesR, +  iMaxR, +  division // update prop values if return true +) => { +  const bR = bEnd - aEnd; // bIndex = bR + aIndex - kR + +  const aLength = aEnd - aStart; +  const bLength = bEnd - bStart; +  const baDeltaLength = bLength - aLength; // kR = kF + baDeltaLength +  // Range of diagonals in which forward and reverse paths might overlap. + +  const kMinOverlapR = baDeltaLength - d; // -d <= kF + +  const kMaxOverlapR = baDeltaLength + d; // kF <= d + +  let aIndexPrev1 = NOT_YET_SET; // prev value of [iR - 1] in next iteration +  // Optimization: skip diagonals in which paths cannot ever overlap. + +  const nR = d < iMaxR ? d : iMaxR; // The diagonals kR = d - 2 * iR are odd when d is odd and even when d is even. + +  for (let iR = 0, kR = d; iR <= nR; iR += 1, kR -= 2) { +    // To get first point of path segment, move one change in reverse direction +    // from last point of previous path segment in an adjacent diagonal. +    // In first iteration when iR === 0 and kR === d always insert. +    // In last possible iteration when iR === d and kR === -d always delete. +    const insert = iR === 0 || (iR !== d && aIndexesR[iR] < aIndexPrev1); +    const aLastPrev = insert ? aIndexesR[iR] : aIndexPrev1; +    const aFirst = insert +      ? aLastPrev // vertical to insert from b +      : aLastPrev - 1; // horizontal to delete from a +    // To get last point of path segment, move along diagonal of common items. + +    const bFirst = bR + aFirst - kR; +    const nCommonR = countCommonItemsR( +      aStart, +      aFirst - 1, +      bStart, +      bFirst - 1, +      isCommon +    ); +    const aLast = aFirst - nCommonR; +    aIndexPrev1 = aIndexesR[iR]; +    aIndexesR[iR] = aLast; + +    if (kMinOverlapR <= kR && kR <= kMaxOverlapR) { +      // Solve for iF of forward path with d changes in diagonal kR: +      // kF = kR - baDeltaLength +      // kF = 2 * iF - d +      const iF = (d + (kR - baDeltaLength)) / 2; // If this reverse path overlaps the forward path in this diagonal, +      // then this is a middle change of the index intervals. + +      if (iF <= iMaxF && aLast - 1 <= aIndexesF[iF]) { +        const bLast = bFirst - nCommonR; +        division.nChangePreceding = d; + +        if (d === aLast + bLast - aStart - bStart) { +          // Optimization: number of changes in reverse direction +          // is equal to number of items in preceding interval, +          // therefore it cannot contain any common items. +          division.aEndPreceding = aStart; +          division.bEndPreceding = bStart; +        } else { +          division.aEndPreceding = aLast; +          division.bEndPreceding = bLast; +        } + +        division.nCommonPreceding = nCommonR; + +        if (nCommonR !== 0) { +          // The last point of reverse path segment is start of common subsequence. +          division.aCommonPreceding = aLast; +          division.bCommonPreceding = bLast; +        } + +        division.nChangeFollowing = d - 1; + +        if (d === 1) { +          // There is no previous path segment. +          division.nCommonFollowing = 0; +          division.aStartFollowing = aEnd; +          division.bStartFollowing = bEnd; +        } else { +          // Unlike the Myers algorithm which finds only the middle “snake” +          // this package can find two common subsequences per division. +          // Last point of previous path segment is on an adjacent diagonal. +          const bLastPrev = bR + aLastPrev - (insert ? kR - 1 : kR + 1); // Because of invariant that intervals following the middle change +          // cannot have common items at the start, +          // move in forward direction along a diagonal of common items. + +          const nCommonF = countCommonItemsF( +            aLastPrev, +            aEnd, +            bLastPrev, +            bEnd, +            isCommon +          ); +          division.nCommonFollowing = nCommonF; + +          if (nCommonF !== 0) { +            // The last point of reverse path segment is start of common subsequence. +            division.aCommonFollowing = aLastPrev; +            division.bCommonFollowing = bLastPrev; +          } + +          const aStartFollowing = aLastPrev + nCommonF; // aFirstPrev + +          const bStartFollowing = bLastPrev + nCommonF; // bFirstPrev + +          if (d - 1 === aEnd + bEnd - aStartFollowing - bStartFollowing) { +            // Optimization: number of changes in forward direction +            // is equal to number of items in following interval, +            // therefore it cannot contain any common items. +            division.aStartFollowing = aEnd; +            division.bStartFollowing = bEnd; +          } else { +            division.aStartFollowing = aStartFollowing; +            division.bStartFollowing = bStartFollowing; +          } +        } + +        return true; +      } +    } +  } + +  return false; +}; // Given index intervals and input function to compare items at indexes, +// divide at the middle change. +// +// DO NOT CALL if start === end, because interval cannot contain common items +// and because this function will throw the “no overlap” error. + +const divide = ( +  nChange, +  aStart, +  aEnd, +  bStart, +  bEnd, +  isCommon, +  aIndexesF, +  aIndexesR, +  division // output +) => { +  const bF = bStart - aStart; // bIndex = bF + aIndex - kF + +  const bR = bEnd - aEnd; // bIndex = bR + aIndex - kR + +  const aLength = aEnd - aStart; +  const bLength = bEnd - bStart; // Because graph has square or portrait orientation, +  // length difference is minimum number of items to insert from b. +  // Corresponding forward and reverse diagonals in graph +  // depend on length difference of the sequences: +  // kF = kR - baDeltaLength +  // kR = kF + baDeltaLength + +  const baDeltaLength = bLength - aLength; // Optimization: max diagonal in graph intersects corner of shorter side. + +  let iMaxF = aLength; +  let iMaxR = aLength; // Initialize no changes yet in forward or reverse direction: + +  aIndexesF[0] = aStart - 1; // at open start of interval, outside closed start + +  aIndexesR[0] = aEnd; // at open end of interval + +  if (baDeltaLength % 2 === 0) { +    // The number of changes in paths is 2 * d if length difference is even. +    const dMin = (nChange || baDeltaLength) / 2; +    const dMax = (aLength + bLength) / 2; + +    for (let d = 1; d <= dMax; d += 1) { +      iMaxF = extendPathsF(d, aEnd, bEnd, bF, isCommon, aIndexesF, iMaxF); + +      if (d < dMin) { +        iMaxR = extendPathsR(d, aStart, bStart, bR, isCommon, aIndexesR, iMaxR); +      } else if ( +        // If a reverse path overlaps a forward path in the same diagonal, +        // return a division of the index intervals at the middle change. +        extendOverlappablePathsR( +          d, +          aStart, +          aEnd, +          bStart, +          bEnd, +          isCommon, +          aIndexesF, +          iMaxF, +          aIndexesR, +          iMaxR, +          division +        ) +      ) { +        return; +      } +    } +  } else { +    // The number of changes in paths is 2 * d - 1 if length difference is odd. +    const dMin = ((nChange || baDeltaLength) + 1) / 2; +    const dMax = (aLength + bLength + 1) / 2; // Unroll first half iteration so loop extends the relevant pairs of paths. +    // Because of invariant that intervals have no common items at start or end, +    // and limitation not to call divide with empty intervals, +    // therefore it cannot be called if a forward path with one change +    // would overlap a reverse path with no changes, even if dMin === 1. + +    let d = 1; +    iMaxF = extendPathsF(d, aEnd, bEnd, bF, isCommon, aIndexesF, iMaxF); + +    for (d += 1; d <= dMax; d += 1) { +      iMaxR = extendPathsR( +        d - 1, +        aStart, +        bStart, +        bR, +        isCommon, +        aIndexesR, +        iMaxR +      ); + +      if (d < dMin) { +        iMaxF = extendPathsF(d, aEnd, bEnd, bF, isCommon, aIndexesF, iMaxF); +      } else if ( +        // If a forward path overlaps a reverse path in the same diagonal, +        // return a division of the index intervals at the middle change. +        extendOverlappablePathsF( +          d, +          aStart, +          aEnd, +          bStart, +          bEnd, +          isCommon, +          aIndexesF, +          iMaxF, +          aIndexesR, +          iMaxR, +          division +        ) +      ) { +        return; +      } +    } +  } +  /* istanbul ignore next */ + +  throw new Error( +    `${pkg}: no overlap aStart=${aStart} aEnd=${aEnd} bStart=${bStart} bEnd=${bEnd}` +  ); +}; // Given index intervals and input function to compare items at indexes, +// return by output function the number of adjacent items and starting indexes +// of each common subsequence. Divide and conquer with only linear space. +// +// The index intervals are half open [start, end) like array slice method. +// DO NOT CALL if start === end, because interval cannot contain common items +// and because divide function will throw the “no overlap” error. + +const findSubsequences = ( +  nChange, +  aStart, +  aEnd, +  bStart, +  bEnd, +  transposed, +  callbacks, +  aIndexesF, +  aIndexesR, +  division // temporary memory, not input nor output +) => { +  if (bEnd - bStart < aEnd - aStart) { +    // Transpose graph so it has portrait instead of landscape orientation. +    // Always compare shorter to longer sequence for consistency and optimization. +    transposed = !transposed; + +    if (transposed && callbacks.length === 1) { +      // Lazily wrap callback functions to swap args if graph is transposed. +      const {foundSubsequence, isCommon} = callbacks[0]; +      callbacks[1] = { +        foundSubsequence: (nCommon, bCommon, aCommon) => { +          foundSubsequence(nCommon, aCommon, bCommon); +        }, +        isCommon: (bIndex, aIndex) => isCommon(aIndex, bIndex) +      }; +    } + +    const tStart = aStart; +    const tEnd = aEnd; +    aStart = bStart; +    aEnd = bEnd; +    bStart = tStart; +    bEnd = tEnd; +  } + +  const {foundSubsequence, isCommon} = callbacks[transposed ? 1 : 0]; // Divide the index intervals at the middle change. + +  divide( +    nChange, +    aStart, +    aEnd, +    bStart, +    bEnd, +    isCommon, +    aIndexesF, +    aIndexesR, +    division +  ); +  const { +    nChangePreceding, +    aEndPreceding, +    bEndPreceding, +    nCommonPreceding, +    aCommonPreceding, +    bCommonPreceding, +    nCommonFollowing, +    aCommonFollowing, +    bCommonFollowing, +    nChangeFollowing, +    aStartFollowing, +    bStartFollowing +  } = division; // Unless either index interval is empty, they might contain common items. + +  if (aStart < aEndPreceding && bStart < bEndPreceding) { +    // Recursely find and return common subsequences preceding the division. +    findSubsequences( +      nChangePreceding, +      aStart, +      aEndPreceding, +      bStart, +      bEndPreceding, +      transposed, +      callbacks, +      aIndexesF, +      aIndexesR, +      division +    ); +  } // Return common subsequences that are adjacent to the middle change. + +  if (nCommonPreceding !== 0) { +    foundSubsequence(nCommonPreceding, aCommonPreceding, bCommonPreceding); +  } + +  if (nCommonFollowing !== 0) { +    foundSubsequence(nCommonFollowing, aCommonFollowing, bCommonFollowing); +  } // Unless either index interval is empty, they might contain common items. + +  if (aStartFollowing < aEnd && bStartFollowing < bEnd) { +    // Recursely find and return common subsequences following the division. +    findSubsequences( +      nChangeFollowing, +      aStartFollowing, +      aEnd, +      bStartFollowing, +      bEnd, +      transposed, +      callbacks, +      aIndexesF, +      aIndexesR, +      division +    ); +  } +}; + +const validateLength = (name, arg) => { +  if (typeof arg !== 'number') { +    throw new TypeError(`${pkg}: ${name} typeof ${typeof arg} is not a number`); +  } + +  if (!Number.isSafeInteger(arg)) { +    throw new RangeError(`${pkg}: ${name} value ${arg} is not a safe integer`); +  } + +  if (arg < 0) { +    throw new RangeError(`${pkg}: ${name} value ${arg} is a negative integer`); +  } +}; + +const validateCallback = (name, arg) => { +  const type = typeof arg; + +  if (type !== 'function') { +    throw new TypeError(`${pkg}: ${name} typeof ${type} is not a function`); +  } +}; // Compare items in two sequences to find a longest common subsequence. +// Given lengths of sequences and input function to compare items at indexes, +// return by output function the number of adjacent items and starting indexes +// of each common subsequence. + +function diffSequence(aLength, bLength, isCommon, foundSubsequence) { +  validateLength('aLength', aLength); +  validateLength('bLength', bLength); +  validateCallback('isCommon', isCommon); +  validateCallback('foundSubsequence', foundSubsequence); // Count common items from the start in the forward direction. + +  const nCommonF = countCommonItemsF(0, aLength, 0, bLength, isCommon); + +  if (nCommonF !== 0) { +    foundSubsequence(nCommonF, 0, 0); +  } // Unless both sequences consist of common items only, +  // find common items in the half-trimmed index intervals. + +  if (aLength !== nCommonF || bLength !== nCommonF) { +    // Invariant: intervals do not have common items at the start. +    // The start of an index interval is closed like array slice method. +    const aStart = nCommonF; +    const bStart = nCommonF; // Count common items from the end in the reverse direction. + +    const nCommonR = countCommonItemsR( +      aStart, +      aLength - 1, +      bStart, +      bLength - 1, +      isCommon +    ); // Invariant: intervals do not have common items at the end. +    // The end of an index interval is open like array slice method. + +    const aEnd = aLength - nCommonR; +    const bEnd = bLength - nCommonR; // Unless one sequence consists of common items only, +    // therefore the other trimmed index interval consists of changes only, +    // find common items in the trimmed index intervals. + +    const nCommonFR = nCommonF + nCommonR; + +    if (aLength !== nCommonFR && bLength !== nCommonFR) { +      const nChange = 0; // number of change items is not yet known + +      const transposed = false; // call the original unwrapped functions + +      const callbacks = [ +        { +          foundSubsequence, +          isCommon +        } +      ]; // Indexes in sequence a of last points in furthest reaching paths +      // from outside the start at top left in the forward direction: + +      const aIndexesF = [NOT_YET_SET]; // from the end at bottom right in the reverse direction: + +      const aIndexesR = [NOT_YET_SET]; // Initialize one object as output of all calls to divide function. + +      const division = { +        aCommonFollowing: NOT_YET_SET, +        aCommonPreceding: NOT_YET_SET, +        aEndPreceding: NOT_YET_SET, +        aStartFollowing: NOT_YET_SET, +        bCommonFollowing: NOT_YET_SET, +        bCommonPreceding: NOT_YET_SET, +        bEndPreceding: NOT_YET_SET, +        bStartFollowing: NOT_YET_SET, +        nChangeFollowing: NOT_YET_SET, +        nChangePreceding: NOT_YET_SET, +        nCommonFollowing: NOT_YET_SET, +        nCommonPreceding: NOT_YET_SET +      }; // Find and return common subsequences in the trimmed index intervals. + +      findSubsequences( +        nChange, +        aStart, +        aEnd, +        bStart, +        bEnd, +        transposed, +        callbacks, +        aIndexesF, +        aIndexesR, +        division +      ); +    } + +    if (nCommonR !== 0) { +      foundSubsequence(nCommonR, aEnd, bEnd); +    } +  } +}  | 
