aboutsummaryrefslogtreecommitdiff
path: root/node_modules/diff-sequences/build/index.js
diff options
context:
space:
mode:
Diffstat (limited to 'node_modules/diff-sequences/build/index.js')
-rw-r--r--node_modules/diff-sequences/build/index.js816
1 files changed, 816 insertions, 0 deletions
diff --git a/node_modules/diff-sequences/build/index.js b/node_modules/diff-sequences/build/index.js
new file mode 100644
index 0000000..7ac6339
--- /dev/null
+++ b/node_modules/diff-sequences/build/index.js
@@ -0,0 +1,816 @@
+'use strict';
+
+Object.defineProperty(exports, '__esModule', {
+ value: true
+});
+exports.default = diffSequence;
+
+/**
+ * Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
+ *
+ * This source code is licensed under the MIT license found in the
+ * LICENSE file in the root directory of this source tree.
+ *
+ */
+// This diff-sequences package implements the linear space variation in
+// An O(ND) Difference Algorithm and Its Variations by Eugene W. Myers
+// Relationship in notation between Myers paper and this package:
+// A is a
+// N is aLength, aEnd - aStart, and so on
+// x is aIndex, aFirst, aLast, and so on
+// B is b
+// M is bLength, bEnd - bStart, and so on
+// y is bIndex, bFirst, bLast, and so on
+// Δ = N - M is negative of baDeltaLength = bLength - aLength
+// D is d
+// k is kF
+// k + Δ is kF = kR - baDeltaLength
+// V is aIndexesF or aIndexesR (see comment below about Indexes type)
+// index intervals [1, N] and [1, M] are [0, aLength) and [0, bLength)
+// starting point in forward direction (0, 0) is (-1, -1)
+// starting point in reverse direction (N + 1, M + 1) is (aLength, bLength)
+// The “edit graph” for sequences a and b corresponds to items:
+// in a on the horizontal axis
+// in b on the vertical axis
+//
+// Given a-coordinate of a point in a diagonal, you can compute b-coordinate.
+//
+// Forward diagonals kF:
+// zero diagonal intersects top left corner
+// positive diagonals intersect top edge
+// negative diagonals insersect left edge
+//
+// Reverse diagonals kR:
+// zero diagonal intersects bottom right corner
+// positive diagonals intersect right edge
+// negative diagonals intersect bottom edge
+// The graph contains a directed acyclic graph of edges:
+// horizontal: delete an item from a
+// vertical: insert an item from b
+// diagonal: common item in a and b
+//
+// The algorithm solves dual problems in the graph analogy:
+// Find longest common subsequence: path with maximum number of diagonal edges
+// Find shortest edit script: path with minimum number of non-diagonal edges
+// Input callback function compares items at indexes in the sequences.
+// Output callback function receives the number of adjacent items
+// and starting indexes of each common subsequence.
+// Either original functions or wrapped to swap indexes if graph is transposed.
+// Indexes in sequence a of last point of forward or reverse paths in graph.
+// Myers algorithm indexes by diagonal k which for negative is bad deopt in V8.
+// This package indexes by iF and iR which are greater than or equal to zero.
+// and also updates the index arrays in place to cut memory in half.
+// kF = 2 * iF - d
+// kR = d - 2 * iR
+// Division of index intervals in sequences a and b at the middle change.
+// Invariant: intervals do not have common items at the start or end.
+const pkg = 'diff-sequences'; // for error messages
+
+const NOT_YET_SET = 0; // small int instead of undefined to avoid deopt in V8
+// Return the number of common items that follow in forward direction.
+// The length of what Myers paper calls a “snake” in a forward path.
+
+const countCommonItemsF = (aIndex, aEnd, bIndex, bEnd, isCommon) => {
+ let nCommon = 0;
+
+ while (aIndex < aEnd && bIndex < bEnd && isCommon(aIndex, bIndex)) {
+ aIndex += 1;
+ bIndex += 1;
+ nCommon += 1;
+ }
+
+ return nCommon;
+}; // Return the number of common items that precede in reverse direction.
+// The length of what Myers paper calls a “snake” in a reverse path.
+
+const countCommonItemsR = (aStart, aIndex, bStart, bIndex, isCommon) => {
+ let nCommon = 0;
+
+ while (aStart <= aIndex && bStart <= bIndex && isCommon(aIndex, bIndex)) {
+ aIndex -= 1;
+ bIndex -= 1;
+ nCommon += 1;
+ }
+
+ return nCommon;
+}; // A simple function to extend forward paths from (d - 1) to d changes
+// when forward and reverse paths cannot yet overlap.
+
+const extendPathsF = (
+ d,
+ aEnd,
+ bEnd,
+ bF,
+ isCommon,
+ aIndexesF,
+ iMaxF // return the value because optimization might decrease it
+) => {
+ // Unroll the first iteration.
+ let iF = 0;
+ let kF = -d; // kF = 2 * iF - d
+
+ let aFirst = aIndexesF[iF]; // in first iteration always insert
+
+ let aIndexPrev1 = aFirst; // prev value of [iF - 1] in next iteration
+
+ aIndexesF[iF] += countCommonItemsF(
+ aFirst + 1,
+ aEnd,
+ bF + aFirst - kF + 1,
+ bEnd,
+ isCommon
+ ); // Optimization: skip diagonals in which paths cannot ever overlap.
+
+ const nF = d < iMaxF ? d : iMaxF; // The diagonals kF are odd when d is odd and even when d is even.
+
+ for (iF += 1, kF += 2; iF <= nF; iF += 1, kF += 2) {
+ // To get first point of path segment, move one change in forward direction
+ // from last point of previous path segment in an adjacent diagonal.
+ // In last possible iteration when iF === d and kF === d always delete.
+ if (iF !== d && aIndexPrev1 < aIndexesF[iF]) {
+ aFirst = aIndexesF[iF]; // vertical to insert from b
+ } else {
+ aFirst = aIndexPrev1 + 1; // horizontal to delete from a
+
+ if (aEnd <= aFirst) {
+ // Optimization: delete moved past right of graph.
+ return iF - 1;
+ }
+ } // To get last point of path segment, move along diagonal of common items.
+
+ aIndexPrev1 = aIndexesF[iF];
+ aIndexesF[iF] =
+ aFirst +
+ countCommonItemsF(aFirst + 1, aEnd, bF + aFirst - kF + 1, bEnd, isCommon);
+ }
+
+ return iMaxF;
+}; // A simple function to extend reverse paths from (d - 1) to d changes
+// when reverse and forward paths cannot yet overlap.
+
+const extendPathsR = (
+ d,
+ aStart,
+ bStart,
+ bR,
+ isCommon,
+ aIndexesR,
+ iMaxR // return the value because optimization might decrease it
+) => {
+ // Unroll the first iteration.
+ let iR = 0;
+ let kR = d; // kR = d - 2 * iR
+
+ let aFirst = aIndexesR[iR]; // in first iteration always insert
+
+ let aIndexPrev1 = aFirst; // prev value of [iR - 1] in next iteration
+
+ aIndexesR[iR] -= countCommonItemsR(
+ aStart,
+ aFirst - 1,
+ bStart,
+ bR + aFirst - kR - 1,
+ isCommon
+ ); // Optimization: skip diagonals in which paths cannot ever overlap.
+
+ const nR = d < iMaxR ? d : iMaxR; // The diagonals kR are odd when d is odd and even when d is even.
+
+ for (iR += 1, kR -= 2; iR <= nR; iR += 1, kR -= 2) {
+ // To get first point of path segment, move one change in reverse direction
+ // from last point of previous path segment in an adjacent diagonal.
+ // In last possible iteration when iR === d and kR === -d always delete.
+ if (iR !== d && aIndexesR[iR] < aIndexPrev1) {
+ aFirst = aIndexesR[iR]; // vertical to insert from b
+ } else {
+ aFirst = aIndexPrev1 - 1; // horizontal to delete from a
+
+ if (aFirst < aStart) {
+ // Optimization: delete moved past left of graph.
+ return iR - 1;
+ }
+ } // To get last point of path segment, move along diagonal of common items.
+
+ aIndexPrev1 = aIndexesR[iR];
+ aIndexesR[iR] =
+ aFirst -
+ countCommonItemsR(
+ aStart,
+ aFirst - 1,
+ bStart,
+ bR + aFirst - kR - 1,
+ isCommon
+ );
+ }
+
+ return iMaxR;
+}; // A complete function to extend forward paths from (d - 1) to d changes.
+// Return true if a path overlaps reverse path of (d - 1) changes in its diagonal.
+
+const extendOverlappablePathsF = (
+ d,
+ aStart,
+ aEnd,
+ bStart,
+ bEnd,
+ isCommon,
+ aIndexesF,
+ iMaxF,
+ aIndexesR,
+ iMaxR,
+ division // update prop values if return true
+) => {
+ const bF = bStart - aStart; // bIndex = bF + aIndex - kF
+
+ const aLength = aEnd - aStart;
+ const bLength = bEnd - bStart;
+ const baDeltaLength = bLength - aLength; // kF = kR - baDeltaLength
+ // Range of diagonals in which forward and reverse paths might overlap.
+
+ const kMinOverlapF = -baDeltaLength - (d - 1); // -(d - 1) <= kR
+
+ const kMaxOverlapF = -baDeltaLength + (d - 1); // kR <= (d - 1)
+
+ let aIndexPrev1 = NOT_YET_SET; // prev value of [iF - 1] in next iteration
+ // Optimization: skip diagonals in which paths cannot ever overlap.
+
+ const nF = d < iMaxF ? d : iMaxF; // The diagonals kF = 2 * iF - d are odd when d is odd and even when d is even.
+
+ for (let iF = 0, kF = -d; iF <= nF; iF += 1, kF += 2) {
+ // To get first point of path segment, move one change in forward direction
+ // from last point of previous path segment in an adjacent diagonal.
+ // In first iteration when iF === 0 and kF === -d always insert.
+ // In last possible iteration when iF === d and kF === d always delete.
+ const insert = iF === 0 || (iF !== d && aIndexPrev1 < aIndexesF[iF]);
+ const aLastPrev = insert ? aIndexesF[iF] : aIndexPrev1;
+ const aFirst = insert
+ ? aLastPrev // vertical to insert from b
+ : aLastPrev + 1; // horizontal to delete from a
+ // To get last point of path segment, move along diagonal of common items.
+
+ const bFirst = bF + aFirst - kF;
+ const nCommonF = countCommonItemsF(
+ aFirst + 1,
+ aEnd,
+ bFirst + 1,
+ bEnd,
+ isCommon
+ );
+ const aLast = aFirst + nCommonF;
+ aIndexPrev1 = aIndexesF[iF];
+ aIndexesF[iF] = aLast;
+
+ if (kMinOverlapF <= kF && kF <= kMaxOverlapF) {
+ // Solve for iR of reverse path with (d - 1) changes in diagonal kF:
+ // kR = kF + baDeltaLength
+ // kR = (d - 1) - 2 * iR
+ const iR = (d - 1 - (kF + baDeltaLength)) / 2; // If this forward path overlaps the reverse path in this diagonal,
+ // then this is the middle change of the index intervals.
+
+ if (iR <= iMaxR && aIndexesR[iR] - 1 <= aLast) {
+ // Unlike the Myers algorithm which finds only the middle “snake”
+ // this package can find two common subsequences per division.
+ // Last point of previous path segment is on an adjacent diagonal.
+ const bLastPrev = bF + aLastPrev - (insert ? kF + 1 : kF - 1); // Because of invariant that intervals preceding the middle change
+ // cannot have common items at the end,
+ // move in reverse direction along a diagonal of common items.
+
+ const nCommonR = countCommonItemsR(
+ aStart,
+ aLastPrev,
+ bStart,
+ bLastPrev,
+ isCommon
+ );
+ const aIndexPrevFirst = aLastPrev - nCommonR;
+ const bIndexPrevFirst = bLastPrev - nCommonR;
+ const aEndPreceding = aIndexPrevFirst + 1;
+ const bEndPreceding = bIndexPrevFirst + 1;
+ division.nChangePreceding = d - 1;
+
+ if (d - 1 === aEndPreceding + bEndPreceding - aStart - bStart) {
+ // Optimization: number of preceding changes in forward direction
+ // is equal to number of items in preceding interval,
+ // therefore it cannot contain any common items.
+ division.aEndPreceding = aStart;
+ division.bEndPreceding = bStart;
+ } else {
+ division.aEndPreceding = aEndPreceding;
+ division.bEndPreceding = bEndPreceding;
+ }
+
+ division.nCommonPreceding = nCommonR;
+
+ if (nCommonR !== 0) {
+ division.aCommonPreceding = aEndPreceding;
+ division.bCommonPreceding = bEndPreceding;
+ }
+
+ division.nCommonFollowing = nCommonF;
+
+ if (nCommonF !== 0) {
+ division.aCommonFollowing = aFirst + 1;
+ division.bCommonFollowing = bFirst + 1;
+ }
+
+ const aStartFollowing = aLast + 1;
+ const bStartFollowing = bFirst + nCommonF + 1;
+ division.nChangeFollowing = d - 1;
+
+ if (d - 1 === aEnd + bEnd - aStartFollowing - bStartFollowing) {
+ // Optimization: number of changes in reverse direction
+ // is equal to number of items in following interval,
+ // therefore it cannot contain any common items.
+ division.aStartFollowing = aEnd;
+ division.bStartFollowing = bEnd;
+ } else {
+ division.aStartFollowing = aStartFollowing;
+ division.bStartFollowing = bStartFollowing;
+ }
+
+ return true;
+ }
+ }
+ }
+
+ return false;
+}; // A complete function to extend reverse paths from (d - 1) to d changes.
+// Return true if a path overlaps forward path of d changes in its diagonal.
+
+const extendOverlappablePathsR = (
+ d,
+ aStart,
+ aEnd,
+ bStart,
+ bEnd,
+ isCommon,
+ aIndexesF,
+ iMaxF,
+ aIndexesR,
+ iMaxR,
+ division // update prop values if return true
+) => {
+ const bR = bEnd - aEnd; // bIndex = bR + aIndex - kR
+
+ const aLength = aEnd - aStart;
+ const bLength = bEnd - bStart;
+ const baDeltaLength = bLength - aLength; // kR = kF + baDeltaLength
+ // Range of diagonals in which forward and reverse paths might overlap.
+
+ const kMinOverlapR = baDeltaLength - d; // -d <= kF
+
+ const kMaxOverlapR = baDeltaLength + d; // kF <= d
+
+ let aIndexPrev1 = NOT_YET_SET; // prev value of [iR - 1] in next iteration
+ // Optimization: skip diagonals in which paths cannot ever overlap.
+
+ const nR = d < iMaxR ? d : iMaxR; // The diagonals kR = d - 2 * iR are odd when d is odd and even when d is even.
+
+ for (let iR = 0, kR = d; iR <= nR; iR += 1, kR -= 2) {
+ // To get first point of path segment, move one change in reverse direction
+ // from last point of previous path segment in an adjacent diagonal.
+ // In first iteration when iR === 0 and kR === d always insert.
+ // In last possible iteration when iR === d and kR === -d always delete.
+ const insert = iR === 0 || (iR !== d && aIndexesR[iR] < aIndexPrev1);
+ const aLastPrev = insert ? aIndexesR[iR] : aIndexPrev1;
+ const aFirst = insert
+ ? aLastPrev // vertical to insert from b
+ : aLastPrev - 1; // horizontal to delete from a
+ // To get last point of path segment, move along diagonal of common items.
+
+ const bFirst = bR + aFirst - kR;
+ const nCommonR = countCommonItemsR(
+ aStart,
+ aFirst - 1,
+ bStart,
+ bFirst - 1,
+ isCommon
+ );
+ const aLast = aFirst - nCommonR;
+ aIndexPrev1 = aIndexesR[iR];
+ aIndexesR[iR] = aLast;
+
+ if (kMinOverlapR <= kR && kR <= kMaxOverlapR) {
+ // Solve for iF of forward path with d changes in diagonal kR:
+ // kF = kR - baDeltaLength
+ // kF = 2 * iF - d
+ const iF = (d + (kR - baDeltaLength)) / 2; // If this reverse path overlaps the forward path in this diagonal,
+ // then this is a middle change of the index intervals.
+
+ if (iF <= iMaxF && aLast - 1 <= aIndexesF[iF]) {
+ const bLast = bFirst - nCommonR;
+ division.nChangePreceding = d;
+
+ if (d === aLast + bLast - aStart - bStart) {
+ // Optimization: number of changes in reverse direction
+ // is equal to number of items in preceding interval,
+ // therefore it cannot contain any common items.
+ division.aEndPreceding = aStart;
+ division.bEndPreceding = bStart;
+ } else {
+ division.aEndPreceding = aLast;
+ division.bEndPreceding = bLast;
+ }
+
+ division.nCommonPreceding = nCommonR;
+
+ if (nCommonR !== 0) {
+ // The last point of reverse path segment is start of common subsequence.
+ division.aCommonPreceding = aLast;
+ division.bCommonPreceding = bLast;
+ }
+
+ division.nChangeFollowing = d - 1;
+
+ if (d === 1) {
+ // There is no previous path segment.
+ division.nCommonFollowing = 0;
+ division.aStartFollowing = aEnd;
+ division.bStartFollowing = bEnd;
+ } else {
+ // Unlike the Myers algorithm which finds only the middle “snake”
+ // this package can find two common subsequences per division.
+ // Last point of previous path segment is on an adjacent diagonal.
+ const bLastPrev = bR + aLastPrev - (insert ? kR - 1 : kR + 1); // Because of invariant that intervals following the middle change
+ // cannot have common items at the start,
+ // move in forward direction along a diagonal of common items.
+
+ const nCommonF = countCommonItemsF(
+ aLastPrev,
+ aEnd,
+ bLastPrev,
+ bEnd,
+ isCommon
+ );
+ division.nCommonFollowing = nCommonF;
+
+ if (nCommonF !== 0) {
+ // The last point of reverse path segment is start of common subsequence.
+ division.aCommonFollowing = aLastPrev;
+ division.bCommonFollowing = bLastPrev;
+ }
+
+ const aStartFollowing = aLastPrev + nCommonF; // aFirstPrev
+
+ const bStartFollowing = bLastPrev + nCommonF; // bFirstPrev
+
+ if (d - 1 === aEnd + bEnd - aStartFollowing - bStartFollowing) {
+ // Optimization: number of changes in forward direction
+ // is equal to number of items in following interval,
+ // therefore it cannot contain any common items.
+ division.aStartFollowing = aEnd;
+ division.bStartFollowing = bEnd;
+ } else {
+ division.aStartFollowing = aStartFollowing;
+ division.bStartFollowing = bStartFollowing;
+ }
+ }
+
+ return true;
+ }
+ }
+ }
+
+ return false;
+}; // Given index intervals and input function to compare items at indexes,
+// divide at the middle change.
+//
+// DO NOT CALL if start === end, because interval cannot contain common items
+// and because this function will throw the “no overlap” error.
+
+const divide = (
+ nChange,
+ aStart,
+ aEnd,
+ bStart,
+ bEnd,
+ isCommon,
+ aIndexesF,
+ aIndexesR,
+ division // output
+) => {
+ const bF = bStart - aStart; // bIndex = bF + aIndex - kF
+
+ const bR = bEnd - aEnd; // bIndex = bR + aIndex - kR
+
+ const aLength = aEnd - aStart;
+ const bLength = bEnd - bStart; // Because graph has square or portrait orientation,
+ // length difference is minimum number of items to insert from b.
+ // Corresponding forward and reverse diagonals in graph
+ // depend on length difference of the sequences:
+ // kF = kR - baDeltaLength
+ // kR = kF + baDeltaLength
+
+ const baDeltaLength = bLength - aLength; // Optimization: max diagonal in graph intersects corner of shorter side.
+
+ let iMaxF = aLength;
+ let iMaxR = aLength; // Initialize no changes yet in forward or reverse direction:
+
+ aIndexesF[0] = aStart - 1; // at open start of interval, outside closed start
+
+ aIndexesR[0] = aEnd; // at open end of interval
+
+ if (baDeltaLength % 2 === 0) {
+ // The number of changes in paths is 2 * d if length difference is even.
+ const dMin = (nChange || baDeltaLength) / 2;
+ const dMax = (aLength + bLength) / 2;
+
+ for (let d = 1; d <= dMax; d += 1) {
+ iMaxF = extendPathsF(d, aEnd, bEnd, bF, isCommon, aIndexesF, iMaxF);
+
+ if (d < dMin) {
+ iMaxR = extendPathsR(d, aStart, bStart, bR, isCommon, aIndexesR, iMaxR);
+ } else if (
+ // If a reverse path overlaps a forward path in the same diagonal,
+ // return a division of the index intervals at the middle change.
+ extendOverlappablePathsR(
+ d,
+ aStart,
+ aEnd,
+ bStart,
+ bEnd,
+ isCommon,
+ aIndexesF,
+ iMaxF,
+ aIndexesR,
+ iMaxR,
+ division
+ )
+ ) {
+ return;
+ }
+ }
+ } else {
+ // The number of changes in paths is 2 * d - 1 if length difference is odd.
+ const dMin = ((nChange || baDeltaLength) + 1) / 2;
+ const dMax = (aLength + bLength + 1) / 2; // Unroll first half iteration so loop extends the relevant pairs of paths.
+ // Because of invariant that intervals have no common items at start or end,
+ // and limitation not to call divide with empty intervals,
+ // therefore it cannot be called if a forward path with one change
+ // would overlap a reverse path with no changes, even if dMin === 1.
+
+ let d = 1;
+ iMaxF = extendPathsF(d, aEnd, bEnd, bF, isCommon, aIndexesF, iMaxF);
+
+ for (d += 1; d <= dMax; d += 1) {
+ iMaxR = extendPathsR(
+ d - 1,
+ aStart,
+ bStart,
+ bR,
+ isCommon,
+ aIndexesR,
+ iMaxR
+ );
+
+ if (d < dMin) {
+ iMaxF = extendPathsF(d, aEnd, bEnd, bF, isCommon, aIndexesF, iMaxF);
+ } else if (
+ // If a forward path overlaps a reverse path in the same diagonal,
+ // return a division of the index intervals at the middle change.
+ extendOverlappablePathsF(
+ d,
+ aStart,
+ aEnd,
+ bStart,
+ bEnd,
+ isCommon,
+ aIndexesF,
+ iMaxF,
+ aIndexesR,
+ iMaxR,
+ division
+ )
+ ) {
+ return;
+ }
+ }
+ }
+ /* istanbul ignore next */
+
+ throw new Error(
+ `${pkg}: no overlap aStart=${aStart} aEnd=${aEnd} bStart=${bStart} bEnd=${bEnd}`
+ );
+}; // Given index intervals and input function to compare items at indexes,
+// return by output function the number of adjacent items and starting indexes
+// of each common subsequence. Divide and conquer with only linear space.
+//
+// The index intervals are half open [start, end) like array slice method.
+// DO NOT CALL if start === end, because interval cannot contain common items
+// and because divide function will throw the “no overlap” error.
+
+const findSubsequences = (
+ nChange,
+ aStart,
+ aEnd,
+ bStart,
+ bEnd,
+ transposed,
+ callbacks,
+ aIndexesF,
+ aIndexesR,
+ division // temporary memory, not input nor output
+) => {
+ if (bEnd - bStart < aEnd - aStart) {
+ // Transpose graph so it has portrait instead of landscape orientation.
+ // Always compare shorter to longer sequence for consistency and optimization.
+ transposed = !transposed;
+
+ if (transposed && callbacks.length === 1) {
+ // Lazily wrap callback functions to swap args if graph is transposed.
+ const {foundSubsequence, isCommon} = callbacks[0];
+ callbacks[1] = {
+ foundSubsequence: (nCommon, bCommon, aCommon) => {
+ foundSubsequence(nCommon, aCommon, bCommon);
+ },
+ isCommon: (bIndex, aIndex) => isCommon(aIndex, bIndex)
+ };
+ }
+
+ const tStart = aStart;
+ const tEnd = aEnd;
+ aStart = bStart;
+ aEnd = bEnd;
+ bStart = tStart;
+ bEnd = tEnd;
+ }
+
+ const {foundSubsequence, isCommon} = callbacks[transposed ? 1 : 0]; // Divide the index intervals at the middle change.
+
+ divide(
+ nChange,
+ aStart,
+ aEnd,
+ bStart,
+ bEnd,
+ isCommon,
+ aIndexesF,
+ aIndexesR,
+ division
+ );
+ const {
+ nChangePreceding,
+ aEndPreceding,
+ bEndPreceding,
+ nCommonPreceding,
+ aCommonPreceding,
+ bCommonPreceding,
+ nCommonFollowing,
+ aCommonFollowing,
+ bCommonFollowing,
+ nChangeFollowing,
+ aStartFollowing,
+ bStartFollowing
+ } = division; // Unless either index interval is empty, they might contain common items.
+
+ if (aStart < aEndPreceding && bStart < bEndPreceding) {
+ // Recursely find and return common subsequences preceding the division.
+ findSubsequences(
+ nChangePreceding,
+ aStart,
+ aEndPreceding,
+ bStart,
+ bEndPreceding,
+ transposed,
+ callbacks,
+ aIndexesF,
+ aIndexesR,
+ division
+ );
+ } // Return common subsequences that are adjacent to the middle change.
+
+ if (nCommonPreceding !== 0) {
+ foundSubsequence(nCommonPreceding, aCommonPreceding, bCommonPreceding);
+ }
+
+ if (nCommonFollowing !== 0) {
+ foundSubsequence(nCommonFollowing, aCommonFollowing, bCommonFollowing);
+ } // Unless either index interval is empty, they might contain common items.
+
+ if (aStartFollowing < aEnd && bStartFollowing < bEnd) {
+ // Recursely find and return common subsequences following the division.
+ findSubsequences(
+ nChangeFollowing,
+ aStartFollowing,
+ aEnd,
+ bStartFollowing,
+ bEnd,
+ transposed,
+ callbacks,
+ aIndexesF,
+ aIndexesR,
+ division
+ );
+ }
+};
+
+const validateLength = (name, arg) => {
+ if (typeof arg !== 'number') {
+ throw new TypeError(`${pkg}: ${name} typeof ${typeof arg} is not a number`);
+ }
+
+ if (!Number.isSafeInteger(arg)) {
+ throw new RangeError(`${pkg}: ${name} value ${arg} is not a safe integer`);
+ }
+
+ if (arg < 0) {
+ throw new RangeError(`${pkg}: ${name} value ${arg} is a negative integer`);
+ }
+};
+
+const validateCallback = (name, arg) => {
+ const type = typeof arg;
+
+ if (type !== 'function') {
+ throw new TypeError(`${pkg}: ${name} typeof ${type} is not a function`);
+ }
+}; // Compare items in two sequences to find a longest common subsequence.
+// Given lengths of sequences and input function to compare items at indexes,
+// return by output function the number of adjacent items and starting indexes
+// of each common subsequence.
+
+function diffSequence(aLength, bLength, isCommon, foundSubsequence) {
+ validateLength('aLength', aLength);
+ validateLength('bLength', bLength);
+ validateCallback('isCommon', isCommon);
+ validateCallback('foundSubsequence', foundSubsequence); // Count common items from the start in the forward direction.
+
+ const nCommonF = countCommonItemsF(0, aLength, 0, bLength, isCommon);
+
+ if (nCommonF !== 0) {
+ foundSubsequence(nCommonF, 0, 0);
+ } // Unless both sequences consist of common items only,
+ // find common items in the half-trimmed index intervals.
+
+ if (aLength !== nCommonF || bLength !== nCommonF) {
+ // Invariant: intervals do not have common items at the start.
+ // The start of an index interval is closed like array slice method.
+ const aStart = nCommonF;
+ const bStart = nCommonF; // Count common items from the end in the reverse direction.
+
+ const nCommonR = countCommonItemsR(
+ aStart,
+ aLength - 1,
+ bStart,
+ bLength - 1,
+ isCommon
+ ); // Invariant: intervals do not have common items at the end.
+ // The end of an index interval is open like array slice method.
+
+ const aEnd = aLength - nCommonR;
+ const bEnd = bLength - nCommonR; // Unless one sequence consists of common items only,
+ // therefore the other trimmed index interval consists of changes only,
+ // find common items in the trimmed index intervals.
+
+ const nCommonFR = nCommonF + nCommonR;
+
+ if (aLength !== nCommonFR && bLength !== nCommonFR) {
+ const nChange = 0; // number of change items is not yet known
+
+ const transposed = false; // call the original unwrapped functions
+
+ const callbacks = [
+ {
+ foundSubsequence,
+ isCommon
+ }
+ ]; // Indexes in sequence a of last points in furthest reaching paths
+ // from outside the start at top left in the forward direction:
+
+ const aIndexesF = [NOT_YET_SET]; // from the end at bottom right in the reverse direction:
+
+ const aIndexesR = [NOT_YET_SET]; // Initialize one object as output of all calls to divide function.
+
+ const division = {
+ aCommonFollowing: NOT_YET_SET,
+ aCommonPreceding: NOT_YET_SET,
+ aEndPreceding: NOT_YET_SET,
+ aStartFollowing: NOT_YET_SET,
+ bCommonFollowing: NOT_YET_SET,
+ bCommonPreceding: NOT_YET_SET,
+ bEndPreceding: NOT_YET_SET,
+ bStartFollowing: NOT_YET_SET,
+ nChangeFollowing: NOT_YET_SET,
+ nChangePreceding: NOT_YET_SET,
+ nCommonFollowing: NOT_YET_SET,
+ nCommonPreceding: NOT_YET_SET
+ }; // Find and return common subsequences in the trimmed index intervals.
+
+ findSubsequences(
+ nChange,
+ aStart,
+ aEnd,
+ bStart,
+ bEnd,
+ transposed,
+ callbacks,
+ aIndexesF,
+ aIndexesR,
+ division
+ );
+ }
+
+ if (nCommonR !== 0) {
+ foundSubsequence(nCommonR, aEnd, bEnd);
+ }
+ }
+}