1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
|
use crate::r#type::{Type, TypeError, Type::*, TypeError::*, util::*};
use crate::sexp::{SExp, SExp::*, SLeaf::*};
use std::collections::HashMap;
impl SExp {
/// Returns the type of valid expressions.
/// Invalid expressions result in an error.
///
/// Examples of simple expressions and their simple types:
/// ```rust
/// use myslip::{
/// r#type::{*, Type::*, TypeError::*},
/// sexp::{SExp::*, SLeaf::*, util::*},
/// };
///
/// assert_eq!(Atom(Int(1)).type_check(), Ok(Integer));
/// ```
///
/// Quotes are given list types:
/// ```rust
/// use myslip::{
/// r#type::{*, Type::*, TypeError::*, util::*},
/// sexp::{SExp::*, SLeaf::*, util::*},
/// };
///
/// assert_eq!(
/// scons(Quote, scons(1, scons(2, Nil))).type_check(),
/// Ok(List(vec![Integer, Integer]))
/// );
/// ```
/// Though so is Nil given too:
/// ```rust
/// use myslip::{
/// r#type::{*, Type::*, TypeError::*, util::*},
/// sexp::{SExp::*, SLeaf::*, util::*},
/// };
///
/// assert_eq!(
/// Atom(Nil).type_check(),
/// Ok(List(vec![]))
/// );
/// ```
///
/// Some common operators get arrow types:
/// ```rust
/// use myslip::{
/// r#type::{*, Type::*, TypeError::*, util::*},
/// sexp::{SExp::*, SLeaf::*, util::*},
/// };
///
/// assert_eq!(Atom(Add).type_check(), Ok(arr(List(vec![Integer, Integer]), Integer)));
/// assert_eq!(Atom(Mul).type_check(), Ok(arr(List(vec![Integer, Integer]), Integer)));
/// assert_eq!(Atom(Sub).type_check(), Ok(arr(List(vec![Integer, Integer]), Integer)));
/// assert_eq!(Atom(Div).type_check(), Ok(arr(List(vec![Integer, Integer]), Integer)));
/// ```
///
/// Though perhaps the most important task of the type system
/// is to increase safety by being able to warn about errors
/// before evaluation. Here are some failing examples:
/// ```rust
/// use myslip::{
/// r#type::{*, Type::*, TypeError::*, util::*},
/// sexp::{SExp::*, SLeaf::*, util::*},
/// };
///
/// let err = scons(Mul, scons(1, Nil)).type_check();
/// match err {
/// Err(InvalidArgList { .. }) => (),
/// _ => panic!(
/// "passing only 1 argument to '*' should result in InvalidArgList error, found '{:?}'",
/// err
/// ),
/// };
///
/// match scons(Sub, scons(1, scons(2, scons(3, Nil)))).type_check() {
/// Err(InvalidArgList { .. }) => (),
/// _ => panic!(
/// "passing over 2 arguments to '-' should result in InvalidArgList error"
/// ),
/// };
///
/// match scons(1, scons(2, Nil)).type_check() {
/// Err(InvalidOperator { .. }) => (),
/// _ => panic!(
/// "'1' as an operator should result in InvalidOperator error"
/// ),
/// };
///
/// match scons(Add, scons(Sub, scons(1, Nil))).type_check() {
/// Err(InvalidArgList { .. }) => (),
/// _ => panic!(
/// "passing '-' as an argument to '+' should return in InvalidArgList error"
/// ),
/// };
/// ```
///
/// Also, free variables should result in an error
/// as their type can't be known by the type checker.
/// ```rust
/// use myslip::{
/// r#type::{*, Type::*, TypeError::*, util::*},
/// sexp::{SExp::*, SLeaf::*, util::*},
/// };
///
/// match scons(Quote, scons(var("a"), Nil)).type_check() {
/// Err(UndefinedVariable(a)) if &a == "a" => (),
/// _ => panic!(
/// "passing a free variable in type check should result in UndefinedVariable error"
/// ),
/// };
/// ```
pub fn type_check(&self) -> Result<Type, TypeError> {
self.infer_type(HashMap::new())
}
fn infer_type(&self, ctx: HashMap<String, Type>) -> Result<Type, TypeError> {
match self {
Atom(Int(_)) => Ok(Integer),
Atom(Var(name)) => ctx.get(name)
.ok_or(UndefinedVariable(name.to_string()))
.cloned(),
Atom(Add) => Ok(arr(List(vec![Integer, Integer]), Integer)), // TODO varlen
Atom(Mul) => Ok(arr(List(vec![Integer, Integer]), Integer)), // TODO varlen
Atom(Sub) => Ok(arr(List(vec![Integer, Integer]), Integer)),
Atom(Div) => Ok(arr(List(vec![Integer, Integer]), Integer)),
Atom(Nil) => Ok(List(vec![])),
Atom(Quote) => Ok(arr(
VarType("T".to_string()),
VarType("T".to_string())
)),
SCons(op, l) => {
let opertype = (*op).infer_type(ctx.clone())?;
let argstype = (*l).infer_list_type(ctx)?;
let opertype = if opertype.is_concrete().is_ok() {
opertype
} else {
opertype.infer_generics(&argstype)?
};
match (opertype, argstype) {
(Arrow(a, b), c) => {
if *a != c {
Err(InvalidArgList {
arglist: (**l).clone(),
expected: *a,
found: c,
})
} else {
Ok(*b)
}
},
(t, _) => Err(InvalidOperator {
operator: *op.clone(),
expected: arr(
VarType(String::from("_")),
VarType(String::from("_"))
),
found: t,
}),
}
},
}
}
fn infer_list_type(&self, ctx: HashMap<String, Type>) -> Result<Type, TypeError> {
let mut res = vec![];
for exp in self.clone().parts() {
res.push(exp.infer_type(ctx.clone())?);
}
Ok(List(res))
}
}
impl Type {
/// Infers the type of generic 'VarType's using type of arguments.
///
/// In case there are generic variables that can't be inferred,
/// returns an TypeError::UnboundVariable.
fn infer_generics(&self, argtype: &Type) -> Result<Type, TypeError> {
match self {
Arrow(from, to) => {
let generics = match (*from).infer_generics_ctx(argtype, Vec::new()) {
Ok(x) => Ok(x),
Err(None) => Err(ArgumentsDontMatchGeneric {
argtype: argtype.clone(),
generictype: self.clone(),
}),
Err(Some(e)) => Err(e),
}?;
let mut restype = (**to).clone();
for (name, ty) in generics {
restype = restype.subst(&name, &ty);
}
match restype.is_concrete() {
Ok(()) => Ok(arr(argtype.clone(), restype)),
Err(unbound) => Err(UnboundGeneric(unbound)),
}
},
_ => Err(OtherError)
}
}
fn infer_generics_ctx(
&self,
argtype: &Type,
ctx: Vec<(String, Type)>
) -> Result<Vec<(String, Type)>, Option<TypeError>> {
match (self, argtype) {
(a, b) if a == b => Ok(ctx),
(Arrow(a1, a2), Arrow(b1, b2)) => {
let mut r1 = a1.infer_generics_ctx(b1, ctx.clone())?;
let r2 = a2.infer_generics_ctx(b2, ctx.clone())?;
r1.extend_from_slice(&r2);
r1.extend_from_slice(&ctx);
Ok(r1)
},
(List(v1), List(v2)) => {
let mut res = ctx.clone();
for (t1, t2) in v1.into_iter().zip(v2.into_iter()) {
let newctx = t1.infer_generics_ctx(t2, ctx.clone())?;
res.extend_from_slice(&newctx);
}
Ok(res)
},
(VarType(name), ty) => {
let mut res = ctx.clone();
res.push((name.clone(), ty.clone()));
Ok(res)
},
(_a, _b) => Err(None),
}
}
}
#[cfg(test)]
mod tests {
use super::{*, TypeError};
#[test]
fn test_failing_infer_generics() {
assert_eq!(
arr(Integer, VarType("X".to_string())).infer_generics(&Integer),
Err(TypeError::UnboundGeneric(String::from("X")))
);
}
#[test]
fn test_infer_generics() {
// Simple identity function, really all we
// care about (this language doesn't attempt
// to have useful generic programming capabilities,
// but some simple features are required for typing
// quotes)...
assert_eq!(
arr(VarType("T".to_string()), VarType("T".to_string())).infer_generics(&Integer),
Ok(arr(Integer, Integer))
);
// ...but let's make it work for other simple cases too,
// maybe someone finds use for these.
assert_eq!(
arr(
List(vec![Integer, VarType("T".to_string())]),
List(vec![VarType("T".to_string()), Integer])
).infer_generics(
&List(vec![Integer, arr(Integer, Integer)])
),
Ok(arr(
List(vec![Integer, arr(Integer, Integer)]),
List(vec![arr(Integer, Integer), Integer])
))
);
assert_eq!(
arr(VarType("T".to_string()), Integer).infer_generics(&List(vec![Integer])),
Ok(arr(List(vec![Integer]), Integer))
);
assert_eq!(
arr(List(vec![VarType("A".to_string()), VarType("B".to_string())]), VarType("B".to_string()))
.infer_generics(&List(vec![Integer, arr(Integer, Integer)])),
Ok(arr(
List(vec![Integer, arr(Integer, Integer)]),
arr(Integer, Integer)
))
);
assert_eq!(
arr(
arr(VarType("A".to_string()), VarType("B".to_string())),
arr(VarType("B".to_string()), VarType("A".to_string()))
).infer_generics(&arr(Integer, arr(Integer, Integer))),
Ok(arr(
arr(Integer, arr(Integer, Integer)),
arr(arr(Integer, Integer), Integer)
))
);
}
}
|