1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
|
use crate::r#type::{Type, TypeError, Type::*, TypeError::*, PatFail::*, util::*};
use crate::sexp::{SExp, SExp::*, SLeaf::*, util::*};
use std::collections::HashMap;
impl SExp {
/// Returns the type of valid expressions.
/// Invalid expressions result in an error.
///
/// Examples of simple expressions and their simple types:
/// ```rust
/// use myslip::{
/// r#type::{*, Type::*, TypeError::*},
/// sexp::{SExp::*, SLeaf::*, util::*},
/// };
///
/// assert_eq!(Atom(Int(1)).type_check(), Ok(Integer));
/// assert_eq!(Atom(False).type_check(), Ok(Boolean));
/// ```
///
/// Quotes are given list types:
/// ```rust
/// use myslip::{
/// r#type::{*, Type::*, TypeError::*, util::*},
/// sexp::{SExp::*, SLeaf::*, util::*},
/// };
///
/// assert_eq!(
/// scons(Quote, scons(1, scons(False, Nil))).type_check(),
/// Ok(List(vec![QuoteTy, List(vec![Integer, Boolean])]))
/// );
/// ```
///
/// Even though Nil is formatted as an empty list,
/// it has its own type.
/// ```rust
/// use myslip::{
/// r#type::{*, Type::*, TypeError::*, util::*},
/// sexp::{SExp::*, SLeaf::*, util::*},
/// };
///
/// assert_eq!(
/// Atom(Nil).type_check(),
/// Ok(NilType)
/// );
/// ```
///
/// Vectors are kind of special...
/// ```rust
/// use myslip::{
/// r#type::{*, Type::*, TypeError::*, util::*},
/// sexp::{SExp::*, SLeaf::*, util::*},
/// };
///
/// assert_eq!(
/// scons(Vector, scons(1, scons(3, Nil))).type_check(),
/// Ok(List(vec![VecType, vecof(Integer)]))
/// );
/// ```
/// ...so please don't ask what their type is.
///
/// Some common operators get arrow types:
/// ```rust
/// use myslip::{
/// r#type::{*, Type::*, TypeError::*, util::*},
/// sexp::{SExp::*, SLeaf::*, util::*},
/// };
///
/// assert_eq!(Atom(Sub).type_check(), Ok(arr(List(vec![Integer, Integer]), Integer)));
/// assert_eq!(Atom(Div).type_check(), Ok(arr(List(vec![Integer, Integer]), Integer)));
/// assert_eq!(Atom(Eq) .type_check(), Ok(arr(List(vec![Integer, Integer]), Boolean)));
/// assert_eq!(Atom(Neq).type_check(), Ok(arr(List(vec![Integer, Integer]), Boolean)));
/// assert_eq!(Atom(Gt) .type_check(), Ok(arr(List(vec![Integer, Integer]), Boolean)));
/// assert_eq!(Atom(Lt) .type_check(), Ok(arr(List(vec![Integer, Integer]), Boolean)));
/// assert_eq!(Atom(Ge) .type_check(), Ok(arr(List(vec![Integer, Integer]), Boolean)));
/// assert_eq!(Atom(Le) .type_check(), Ok(arr(List(vec![Integer, Integer]), Boolean)));
/// assert_eq!(Atom(And).type_check(), Ok(arr(List(vec![Boolean, Boolean]), Boolean)));
/// assert_eq!(Atom(Or) .type_check(), Ok(arr(List(vec![Boolean, Boolean]), Boolean)));
/// assert_eq!(Atom(Xor).type_check(), Ok(arr(List(vec![Boolean, Boolean]), Boolean)));
/// assert_eq!(Atom(Not).type_check(), Ok(arr(Boolean, Boolean)));
/// ```
///
///
/// **Let-binding types**
///
/// Let-bindings are quite interesting. Implementation is still a bit uncertain,
/// but at least we know that
/// ```rust
/// use myslip::{
/// r#type::{*, Type::*, TypeError::*, util::*},
/// sexp::{SExp::*, SLeaf::*, util::*},
/// };
///
/// assert_eq!(
/// scons(
/// scons(Let, scons(var("x"), scons(False, Nil))),
/// scons(var("x"), Nil)
/// ).type_check(),
/// Ok(Boolean)
/// );
/// ```
///
/// **Functions**
///
/// One variable:
/// ```rust
/// use myslip::{
/// r#type::{*, Type::*, TypeError::*, util::*},
/// sexp::{SExp::*, SLeaf::*, util::*},
/// };
///
/// let varlist = scons(var("a"), Nil);
/// let typelist = Atom(Ty(Integer));
/// let ret = Atom(Ty(Integer));
/// let body = scons(Add, scons(var("a"), scons(1, Nil)));
/// assert_eq!(
/// scons(Fun, scons(varlist, scons(typelist, scons(ret, scons(body, Nil))))).type_check(),
/// Ok(arr(Integer, Integer))
/// );
/// ```
/// Two-variable:
/// ```rust
/// use myslip::{
/// r#type::{*, Type::*, TypeError::*, util::*},
/// sexp::{SExp::*, SLeaf::*, util::*},
/// };
///
/// let varlist = scons(var("a"), scons(var("b"), Nil));
/// let typelist = Atom(Ty(List(vec![Integer, Integer])));
/// let ret = Atom(Ty(Boolean));
/// let body = scons(Eq, varlist.clone());
/// assert_eq!(
/// scons(Fun, scons(varlist, scons(typelist, scons(ret, scons(body, Nil))))).type_check(),
/// Ok(arr(List(vec![Integer, Integer]), Boolean))
/// );
/// ```
/// Only keyword shouldnt panic:
/// ```rust
/// use myslip::{
/// r#type::{*, Type::*, TypeError::*, util::*},
/// sexp::{SExp::*, SLeaf::*, util::*},
/// };
/// Atom(Fun).type_check();
/// ```
///
/// **Pattern matching**
///
/// If this works, I guess it seems to work...
/// ```rust
/// use myslip::{
/// r#type::{*, Type::*, TypeError::*, util::*},
/// sexp::{SExp::*, SLeaf::*, util::*},
/// parse::parsetree::parse_to_ast
/// };
///
/// assert_eq!(
/// parse_to_ast(
/// "+ (case (quote 1 2 3 true false) ((x 2 3 false true) (+ x 1)) ((0 0 0 true true) 0) (_ 1)) 0"
/// ).unwrap().type_check(),
/// Ok(Integer)
/// );
/// ```
///
///
/// Though perhaps the most important task of the type system
/// is to increase safety by being able to warn about errors
/// before evaluation. Here are some failing examples:
/// ```rust
/// use myslip::{
/// r#type::{*, Type::*, TypeError::*, util::*},
/// sexp::{SExp::*, SLeaf::*, util::*},
/// };
///
/// match scons(Sub, scons(1, scons(2, scons(3, Nil)))).type_check() {
/// Err(InvalidArgList { .. }) => (),
/// _ => panic!(
/// "passing over 2 arguments to '-' should result in InvalidArgList error"
/// ),
/// };
///
/// match scons(1, scons(2, Nil)).type_check() {
/// Err(InvalidOperator { .. }) => (),
/// _ => panic!(
/// "'1' as an operator should result in InvalidOperator error"
/// ),
/// };
///
/// match scons(Add, scons(Sub, scons(1, Nil))).type_check() {
/// Err(InvalidArgList { .. }) => (),
/// _ => panic!(
/// "passing '-' as an argument to '+' should return in InvalidArgList error"
/// ),
/// };
///
/// assert!(scons(And, scons(1, scons(Atom(True), Nil))).type_check().is_err());
/// assert!(scons(Mul, scons(1, scons(Atom(True), Nil))).type_check().is_err());
/// assert!(scons(Not, scons(1, Nil)).type_check().is_err());
///
/// assert!(scons(Vector, scons(1, scons(True, Nil))).type_check().is_err());
/// ```
///
/// Also, free variables should result in an error
/// as their type can't be known by the type checker.
/// ```rust
/// use myslip::{
/// r#type::{*, Type::*, TypeError::*, util::*},
/// sexp::{SExp::*, SLeaf::*, util::*},
/// };
///
/// match scons(Quote, scons(var("a"), Nil)).type_check() {
/// Err(UndefinedVariable(a)) if &a == "a" => (),
/// _ => panic!(
/// "passing a free variable in type check should result in UndefinedVariable error"
/// ),
/// };
/// ```
pub fn type_check(&self) -> Result<Type, TypeError> {
let res = self.infer_type(HashMap::new());
match res {
Ok(res) => match res.is_concrete() {
Ok(()) => Ok(res),
Err(name) => Err(UnboundGeneric(name, res)),
},
e => e,
}
}
pub fn infer_type(&self, mut ctx: HashMap<String, Type>) -> Result<Type, TypeError> {
match self {
Atom(Int(_)) => Ok(Integer),
Atom(True | False) => Ok(Boolean),
Atom(Var(name)) => ctx.get(name)
.ok_or(UndefinedVariable(name.to_string()))
.cloned(),
Atom(Add) => Ok(arr(vecof(Integer), Integer)),
Atom(Mul) => Ok(arr(vecof(Integer), Integer)),
Atom(Sub) => Ok(arr(List(vec![Integer, Integer]), Integer)),
Atom(Div) => Ok(arr(List(vec![Integer, Integer]), Integer)),
Atom(Eq | Neq | Lt | Gt | Le | Ge) =>
Ok(arr(List(vec![Integer, Integer]), Boolean)),
Atom(Or | And | Xor) => Ok(arr(List(vec![Boolean, Boolean]), Boolean)),
Atom(Not) => Ok(arr(Boolean, Boolean)),
Atom(Nil) => Ok(NilType),
Atom(Quote) => Ok(arr(
vt("T"),
List(vec![QuoteTy, vt("T")])
)),
Atom(Vector) => Ok(arr(
vecof(vt("T")),
List(vec![VecType, vecof(vt("T"))])
)),
Atom(Let) => Ok(LetType),
Atom(Print) => Ok(arr(vt("_"), List(vec![]))),
Atom(Ty(_)) => Ok(TypeLit),
Atom(Fun) => Err(FunAsAtom),
Atom(Case) => Err(CaseAsAtom),
Atom(RestPat(_)) => Err(RestAsAtom),
SCons(op, l) => {
// Let-expressions
if let Some((varname, val)) = (*op).clone().check_let() {
let valtype = val.infer_type(ctx.clone())?;
ctx.insert(varname, valtype);
return match (**l).clone() {
SCons(exp, nil) if *nil == Atom(Nil) => *exp,
t => t
}.infer_type(ctx);
}
if **op == Atom(Let) {
return Err(LetAsOperator(scons(op.clone(), l.clone())));
}
// Anonymous functions
if scons(op.clone(), l.clone()).is_fun() {
return scons(op.clone(), l.clone()).get_fun_type(ctx);
}
// Nil vector
if (**op).clone() == Atom(Nil) {
return match (**l).clone() {
SCons(v, n) if *n == Atom(Nil) => match *v {
Atom(Ty(t)) => Ok(vecof(t)),
_ => Err(OtherError),
},
_ => Err(OtherError)
}
}
// Case expressions
if let Some((scrutinee, patarms)) = scons(op.clone(), l.clone()).check_case() {
let scruty = scrutinee.infer_type(ctx.clone())?;
let scruty = match scruty {
List(v) if (
v.get(0) == Some(&QuoteTy)
|| v.get(0) == Some(&VecType)
) && v.get(1).is_some() =>
v[1].clone(),
t => t,
};
let mut ty: Option<Type> = None;
let mut has_wildcard = false;
for patandarm in patarms {
let (pat, arm) = match patandarm {
SCons(pat, arm) => Ok((*pat, *arm)),
_ => Err(InvalidPattern(NoArm(patandarm))),
}?;
let arm = match arm {
SCons(x, n) if *n == Atom(Nil) => *x,
t => t,
};
if let Atom(Var(_)) = pat {
has_wildcard = true;
}
let mut newctx = ctx.clone();
for (name, ty) in pat.matches_type(&scruty)? {
newctx.insert(name, ty);
}
match &ty {
None => ty = Some(arm.infer_type(newctx)?),
Some(t) => ty = Some(t.least_general_supertype(&arm.infer_type(newctx.clone())?)),
}
}
if !has_wildcard {
return Err(NoWildcardInCase(scrutinee));
}
match ty {
Some(t) => return Ok(t),
None => return Err(OtherError),
}
}
// Normal operation
let opertype = (*op).infer_type(ctx.clone())?;
let argstype = (*l).infer_list_type(ctx)?;
let conv_args = match (opertype.clone(), argstype.clone()) {
(Arrow(from, _), a) => match a.clone().into_type(&*from) {
Ok(s) => Ok(s),
Err(()) => Err(InvalidArgList {
arglist: (**l).clone(),
expected: *from,
found: a,
})
},
(a, _) => {
Err(InvalidOperator {
operator: *op.clone(),
expected: arr(vt("_"), vt("_")),
found: a,
})
}
}?;
let opertype = if opertype.is_concrete().is_ok() {
opertype
} else {
opertype.infer_generics(&conv_args)?
};
match (opertype, argstype) {
(Arrow(a, b), c) => {
if c.aka(&*a) {
Ok(*b)
} else {
Err(InvalidArgList {
arglist: (**l).clone(),
expected: *a,
found: c,
})
}
},
(t, _) => Err(InvalidOperator {
operator: *op.clone(),
expected: arr(
VarType(String::from("_")),
VarType(String::from("_"))
),
found: t,
}),
}
},
}
}
pub fn infer_list_type(&self, ctx: HashMap<String, Type>) -> Result<Type, TypeError> {
let mut res = vec![];
for exp in self.clone().parts() {
res.push(exp.infer_type(ctx.clone())?);
}
Ok(List(res))
}
}
impl Type {
/// Infers the type of generic 'VarType's using type of arguments.
///
/// In case there are generic variables that can't be inferred,
/// returns an TypeError::UnboundVariable.
fn infer_generics(&self, argtype: &Type) -> Result<Type, TypeError> {
match self {
Arrow(from, to) => {
let generics = match (*from).infer_generics_ctx(argtype, Vec::new()) {
Ok(x) => Ok(x),
Err(None) => Err(ArgumentsDontMatchGeneric {
argtype: argtype.clone(),
generictype: self.clone(),
}),
Err(Some(e)) => Err(e),
}?;
let mut restype = (**to).clone();
for (name, ty) in generics {
restype = restype.subst(&name, &ty);
}
match restype.is_concrete() {
Ok(()) => Ok(arr(argtype.clone(), restype)),
Err(unbound) => Err(UnboundGeneric(unbound, self.clone())),
}
},
_ => Err(OtherError)
}
}
fn infer_generics_ctx(
&self,
argtype: &Type,
ctx: Vec<(String, Type)>
) -> Result<Vec<(String, Type)>, Option<TypeError>> {
match (self, argtype) {
(a, b) if a == b => Ok(ctx),
(Arrow(a1, a2), Arrow(b1, b2)) => {
let mut r1 = a1.infer_generics_ctx(b1, ctx.clone())?;
let r2 = a2.infer_generics_ctx(b2, ctx.clone())?;
r1.extend_from_slice(&r2);
r1.extend_from_slice(&ctx);
Ok(r1)
},
(List(v1), List(v2)) => {
let mut res = ctx.clone();
for (t1, t2) in v1.into_iter().zip(v2.into_iter()) {
let newctx = t1.infer_generics_ctx(t2, ctx.clone())?;
res.extend_from_slice(&newctx);
}
Ok(res)
},
(VecOf(t1), VecOf(t2)) => {
let mut res = ctx.clone();
let newctx = t1.infer_generics_ctx(t2, ctx.clone())?;
res.extend_from_slice(&newctx);
Ok(res)
},
(VarType(name), ty) => {
let mut res = ctx.clone();
res.push((name.clone(), ty.clone()));
Ok(res)
},
(_a, _b) => Err(None),
}
}
}
#[cfg(test)]
mod tests {
use super::{*, TypeError};
#[test]
fn test_failing_infer_generics() {
assert!(
arr(Integer, VarType("X".to_string())).infer_generics(&Integer).is_err()
);
}
#[test]
fn test_infer_generics() {
// Simple identity function, really all we
// care about (this language doesn't attempt
// to have useful generic programming capabilities,
// but some simple features are required for typing
// quotes)...
assert_eq!(
arr(VarType("T".to_string()), VarType("T".to_string())).infer_generics(&Integer),
Ok(arr(Integer, Integer))
);
// ...but let's make it work for other simple cases too,
// maybe someone finds use for these.
assert_eq!(
arr(
List(vec![Integer, VarType("T".to_string())]),
List(vec![VarType("T".to_string()), Integer])
).infer_generics(
&List(vec![Integer, arr(Integer, Integer)])
),
Ok(arr(
List(vec![Integer, arr(Integer, Integer)]),
List(vec![arr(Integer, Integer), Integer])
))
);
assert_eq!(
arr(VarType("T".to_string()), Integer).infer_generics(&List(vec![Integer])),
Ok(arr(List(vec![Integer]), Integer))
);
assert_eq!(
arr(List(vec![VarType("A".to_string()), VarType("B".to_string())]), VarType("B".to_string()))
.infer_generics(&List(vec![Integer, arr(Integer, Integer)])),
Ok(arr(
List(vec![Integer, arr(Integer, Integer)]),
arr(Integer, Integer)
))
);
assert_eq!(
arr(
arr(VarType("A".to_string()), VarType("B".to_string())),
arr(VarType("B".to_string()), VarType("A".to_string()))
).infer_generics(&arr(Integer, arr(Integer, Integer))),
Ok(arr(
arr(Integer, arr(Integer, Integer)),
arr(arr(Integer, Integer), Integer)
))
);
}
}
|