1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
|
use crate::r#type::Type;
impl Type {
/// Checks if this type is known as the given other type,
/// ie. checks if there exists an implicit conversion from
/// one to the other.
///
/// Currently this is only needed for list to vec conversions.
/// ```rust
/// use myslip::r#type::{Type::*, util::*};
/// assert!(List(vec![Integer, Integer, Integer]).aka(&vecof(Integer)));
/// ```
///
/// Preferrably this should also work with generics:
/// ```rust
/// use myslip::r#type::{Type::*, util::*};
/// assert!(List(vec![Integer, Boolean, Integer]).aka(&vecof(vt("T"))));
/// assert!(List(vec![Integer, Boolean, vt("X")]).aka(&vecof(vt("T"))));
/// ```
///
/// But of course it also should know when to fail:
/// ```rust
/// use myslip::r#type::{Type::*, util::*};
/// assert!(!List(vec![Integer, Boolean]).aka(&vecof(Integer)));
/// assert!(!List(vec![Integer, Boolean]).aka(&vecof(Boolean)));
/// ```
pub fn aka(&self, known_as: &Type) -> bool {
todo!()
}
fn least_general_supertype(&self, other: &Type) -> Type {
todo!()
}
}
#[cfg(test)]
mod tests {
use crate::r#type::{Type::*, util::*};
#[test]
fn test_basic_general_supertypes() {
assert_eq!(Integer.least_general_supertype(&Integer), Integer);
assert_eq!(Integer.least_general_supertype(&Boolean), vt("T"));
}
#[test]
fn test_compound_general_supertypes() {
assert_eq!(
List(vec![Integer, Integer])
.least_general_supertype(
&List(vec![Integer, Integer])
),
List(vec![Integer, Integer])
);
assert_eq!(
List(vec![Integer, Boolean])
.least_general_supertype(
&List(vec![Integer, Integer])
),
List(vec![Integer, vt("T")])
);
assert_eq!(
vecof(Integer)
.least_general_supertype(
&vecof(Integer)
),
vecof(Integer)
);
assert_eq!(
vecof(Integer)
.least_general_supertype(
&vecof(Boolean)
),
vecof(vt("T"))
);
assert_eq!(
List(vec![Integer, Boolean]).least_general_supertype(
&List(vec![Boolean, Integer])
),
List(vec![vt("T"), vt("T")])
);
}
#[test]
fn test_conversion_in_general_supertypes() {
assert_eq!(
List(vec![Integer, Integer]).least_general_supertype(
&vecof(Integer)
),
vecof(Integer)
);
assert_eq!(
List(vec![Integer, Integer]).least_general_supertype(
&List(vec![Integer, Integer, Integer])
),
vecof(Integer)
);
assert_eq!(
List(vec![Integer, Boolean]).least_general_supertype(
&List(vec![Integer, Boolean, Integer])
),
vecof(vt("T"))
);
assert_eq!(
List(vec![Boolean, Integer]).least_general_supertype(
&vecof(Integer)
),
vecof(vt("T"))
);
}
}
|